
Noname manuscript No.
(will be inserted by the editor)

Incremental Execution of Rule-based Model Transformation
Using Dependency Injection and Standardized Model Changes

Artur Boronat

Received: date / Accepted: date

Abstract When model transformations are used to im-
plement consistency relations between very large mod-
els, incrementality plays a cornerstone role in detecting
and resolving inconsistencies efficiently when models
are updated. Given a directed consistency relation be-
tween two models, the problem studied in this work con-
sists in propagating model changes from a source model
to a target model in order to ensure consistency while
minimizing computational costs. The mechanism that
enforces such consistency is called consistency main-
tainer and, in this context, its scalability is a required
non-functional requirement.

State-of-the-art model transformation engines with
support for incrementality normally rely on an observer
pattern for linking model changes, also known as deltas,
to the application of model transformation rules, in so
called dependencies, at run time. These model changes
can then be propagated along an already executed model
transformation. Only a few approaches to model trans-
formation provide domain-specific languages (DSLs) for
representing and storing model changes in order to en-
able their use in asynchronous, event-based execution
environments.

The principal contribution of this work is the design
of a forward change propagation mechanism for incre-
mental execution of model transformations, which de-
couples dependency tracking from change propagation
using two innovations. First, the observer pattern-based
model is replaced with dependency injection, decou-
pling domain models from consistency maintainers. Sec-
ond, a standardized representation of model changes is
reused, enabling interoperability with EMF-compliant
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tools, both for defining model changes and for pro-
cessing them asynchronously. This procedure has been
implemented in a model transformation engine, whose
performance has been evaluated experimentally using
the VIATRA CPS benchmark. In the experiments per-
formed, the new transformation engine shows gains in
the form of several orders of magnitude in the initial
phase of the incremental execution of the benchmark
model transformation and change propagation is per-
formed in real time for those model sizes that are pro-
cessable by other tools and, in addition, is able to pro-
cess much larger models.

Keywords Mappings between languages · traceabil-
ity · incremental execution · performance benchmark.

1 Introduction

Significant issues in the application of Model-Driven
Engineering (MDE) in large-scale industrial problems
stem from interoperability and scalability of current
MDE tools [2,36,32]. The Eclipse Modeling Framework
(EMF) [46] has been used as a de facto standard for
implementing modeling tools, e.g., for AADL in the
OSATE platform [21] or for the AUTOSAR tool plat-
form [1]−both in the automotive domain,−fostering in-
teroperability via a common exchange format. Model
transformation, widely accepted as the heart and soul
of MDE [45], deals with model manipulation either by
translating models or by synchronizing them. Current
tool support for model transformation is a key root
cause for many of the bottlenecks hampering scalability
in MDE [17,4]. This is particularly crucial when trans-
formations are used to implement consistency main-
tainers between very large models, consisting of mil-
ions of elements. In this context, incrementality en-
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sures that only those parts of the model that have been
modified−a model change−are propagated along an al-
ready executed transformation [23,24].

Current state-of-the-art approaches that support in-
cremental execution of model transformations share com-
mon features: the change propagation mechanism is
usually decoupled from the change detection mecha-
nism in order to facilitate maintainability of the con-
sistency maintainer; and model changes are represented
either in memory for synchronous notification or offline,
with dedicated domain-specific languages, for
asynchronous notification. The most mature tools rely
on the observer pattern [22], where model changes are
regarded as events that are notified to observers1 at run
time whenever a model is changed. This notification
mechanism is synchronous and loosely couples model
changes with the change propagation mechanism, facili-
tating maintainability of the underlying transformation
engine after fixing the type of notification. However, it
usually requires an observer for each object that can be
modified, with a consequent impact on performance,
and the model transformation must be live, running as
a thread, in order to listen for changes. These problems
can be avoided by using offline changes. The observer
pattern can be extended to enable asynchronous change
notification using a publish-subscribe mechanism but
this is normally achieved by using dedicated domain-
specific languages to represent changes offline, which do
not involve standardized formats, hindering the inter-
operability of those transformation engines in existing
modeling tool ecosystems.

In this paper, the design of a forward model change
propagation procedure is presented for executing model
transformations in incremental mode that can handle
documented model changes, called change scenarios
in [6], i.e., documents representing a change to a given
source model. Such documents are defined with the
EMF Change Model [46], both conceptually and
implementation-wise, guaranteeing interoperability with
EMF-compliant tools. This design decision replaces an
observer pattern notification with dependency injec-
tion: each notification is directly performed by the im-
plementation of the domain model at run time by inject-
ing the dependency corresponding to the model change.
Aspect-oriented programming is used to weave code
into an already existing implementation of a domain
model totally decoupling domain models from the con-
sistency maintainer at design time.

The proposed forward model change propagation
procedure has been implemented in YAMTL [9], a model
transformation engine for very large models, enabling
the execution of model transformations both in batch

1 Called EMF adapters in EMF terminology.

mode and in incremental mode without additional user
specification overhead. YAMTL is implemented in
Xtend, which transpiles to Java, and uses EMF as the
(meta-)modeling front end. EMF is a de facto imple-
mentation of the MOF standard [39] for meta-modeling,
in particular of essential MOF (eMOF), and most of the
concepts referred to in the rest of this article are com-
mon to all object-oriented meta-modeling frameworks.
Specifically, an EMF metamodel may consist of classes
defining modeling concepts in terms of their structural
features, which can be attributes, if typed with data
types, or references, if typed with other classes. Classes
can be related using multiple inheritance hierarchies,
and (unidirectional or bidirectional) associations, which
can be containments (corresponding to the notion of
compositions in UML). Features can be defined with
multiplicity and ordering constraints. Therefore, the con-
tributions presented should be reusable in tools built on
top of other meta-modeling frameworks. Importantly, a
substantial subset of EMF metamodels and their mod-
els can be represented as type graphs and graphs, re-
spectively, for graph transformation [7,8].

In YAMTL, model changes can be offline, repre-
sented with the standard EMF Change Model, or on-
line, using a tool-specific change notification API. Of-
fline changes help decouple change recording from the
transformation engine, which can be physically
distributed. For example, when recording changes to
a model in a given modelling environment, the model
transformation engine is not required at all. Neverthe-
less, online changes allow for a faster, synchronous no-
tification of changes at a lower level of abstraction.

Our new tool that implements the proposed model
change propagation mechanism has been evaluated with
all of the cases in the VIATRA CPS benchmark, includ-
ing the up-to-now most performant solutions (using VI-
ATRA) and a new solution using ATL [16,15], based on
the Active Operation Framework [34]. The new exten-
sion greatly improves the performance of the batch ex-
ecution mode when propagating model changes. Sparse
changes can be propagated in µs. Larger model changes,
involving knock-on effects, whose extent depends on the
model size, in ms, for those models that are process-
able by other tools. Moreover, the economical use of
resources in the YAMTL implementation enables pro-
cessing much larger models, which cannot sometimes be
transformed by the other tools involved in the study.

The VIATRA CPS benchmark was also used to an-
alyze the performance of ATL in a specialized environ-
ment with an abundance of computational resources [16],
e.g., the publish-subscribe case was analyzed with a
Java heap of 130GB. Our experiments provide a com-
plementary view by limiting computational resources
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to those available in a standard computer, e.g., a Java
heap of 12GB, recreating the conditions under which
such tools are normally operated.

This work is structured as follows: §2 provides a
self-contained description of the class of model transfor-
mations supported using a class diagram to relational
schema model transformation as a running example;
§3 presents the forward propagation procedure imple-
mented in the model transformation engine together
with the main innovations; §4 describes the case study
used in the VIATRA CPS benchmark and a solution
that uses the advanced model transformation features
presented in the previous section; §5 discusses the per-
formance of the transformation engine with an adapta-
tion of the VIATRA CPS benchmark; §6 discusses re-
lated work from reactive and bidirectional model trans-
formation; and §7 wraps up conclusions from the study.

This article is an extended version of [13], which pre-
sented the core notions of the proposed forward model
change propagation mechanism, relying on dependency
injection when object features were used in a model
transformation rule. In this extension, we look at de-
pendencies between computation steps. Specifically at
dependencies between model transformation steps−MT
steps henceforth−resulting from the application of a
model transformation rule, and between query steps,
resulting from the execution of a helper query, and MT
steps. Dependencies between MT steps enable sophisti-
cated incremental execution of model transformations,
and they may need to be declared explicitly to allow for
the use of programming facilities that are external to
the model transformation language (e.g., by using Java
collections in a model transformation rule). In addition,
the extension also enables undoing MT steps that use
such external programming facilities in the presence of
a deleting source model change. Dependencies between
query steps and MT steps enable the incremental ex-
ecution of the model transformation when the helper
query needs to be re-evaluated. These extensions allow
for a larger class of model transformations to be exe-
cuted incrementally. In this extension, we also provide
a more comprehensive experimentation using different
cases from the VIATRA CPS benchmark.

2 Model Transformation: A Running Example

The type of model transformations that are considered
in this work are classified as unidirectional and out-
place. For example, when considering the well-known
example that maps class diagrams to relational schemas,
a class diagram is used by queries to extract informa-
tion and a relational schema is built from scratch.

In this work, model transformations are represented
using an implementation-agnostic graphical syntax,
quite close to that used in the graph transformation lit-
erature. In this representation, metamodels are given as
class diagrams, the abstract syntax of models is given
as object diagrams. The notion of metamodel, model
and model pattern correspond to those of type graph,
attributed graph with containments and node inheri-
tance, and graph pattern in the graph transformation
literature [8,20]. Fig. 1 shows the class diagram meta-
model and the relational schema metamodel used to
define the model transformation.

Model transformations are represented as a collec-
tion of model transformation rules−MT rules
henceforth−where each rule is defined as a pair of model
patterns, called left-hand side (LHS) and right-hand
side (RHS). For example, rules A->C and R->FK of Fig. 1
map attributes to columns. The $ before a variable de-
notes string interpolation.

Graph patterns in rules can be augmented with uni-
versally quantified variables (represented by an over-
laid box), e.g., A:Attribute and COL:Column in rule C->T
of Fig. 1. Moreover, rules are augmented with a when
clause to express conditions that must be satisfied by
the variables in their LHS, and with a where clause to
indicate how variables from their LHS and from their
RHS are related via the application of other rules, ex-
pressed as two graph patterns. Formulas in a when clause
may be expressed in conjunctive form, as all filter con-
ditions must be satisfied in order for the rule to be
applied. Formulas in a where clause may be expressed
in disjunctive form (assuming mutually exclusive con-
ditions), expressing side effects as MT steps that may
occur or not. The variables of the RHS of the main rule
must appear either in the LHS of the main rule or in
the RHS of a where MT step.

Rule C->T of Fig. 1 illustrates how to map a class
to a table with a primary key column PK_COL. For each
attribute A whose type is a DataType, the correspond-
ing column is obtained by applying a rule A->C via a
where clause. For each attribute OTHER whose type is
the class C, matched in LHS of rule C->T, a new for-
eign key column is added to the table T, with the rule
R->FK. Given a source model, the rules of a model trans-
formation are applied until no more rules can be ap-
plied, producing a sequence of rule applications, which
is called model transformation sequence. The second
row in Fig. 1 shows a model transformation sequence
from the given source class diagram to a target rela-
tional schema, representing a sequence of rule appli-
cations of the rules mentioned above from the given
source model, where the specific MT steps have been
abstracted away using the notation *.
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Fig. 1 Metamodels, example and MT rules.

Three different types of rules are considered in this
work: matched, lazy and unique lazy. Matched rules are
applied by the transformation engine and their applica-
tion involve mapping objects matched by the LHS into
objects as defined by the RHS in a one-to-one, injective
relationship. Matched rules can be given a priority−a
low number means high priority − which mandates the
order in which the transformation engine is to match
them. Lazy rules are applied on demand, from a where
clause of another rule, but have a different semantics by
yielding a one-to-many relationship between matched
objects and objects that are created in the RHS, as each
application of the rule creates fresh objects. Matched
rules and lazy rules create an execution context, stor-
ing LHS matches so that these can be used during the
evaluation of the corresponding MT step, where the ob-
jects of their RHS are created. Unique lazy rules com-
bine aspects of the two previous types: they are applied
on demand and they define a one-to-one relationship
between matched objects and freshly created objects
but they reuse the calling execution context. The three
rules in Fig. 1 are matched rules. Examples of unique
and lazy rules can be found in the case study of §4.

MT rules can be simplified by means of the use of
helpers, which define queries using model navigation ex-
pressions, which may be represented either with graph
patterns or with an OCL-like language. Helpers are of-
ten employed to initialize variables in a where clause.
The case study of §4 provides examples of helpers.

From an operational point of view, MT rules are
applied unidirectionally from LHS to RHS performing
an out-place transformation following two steps. First,
during the matching phase, matches for the rules in the
model transformation are found as long as they are not
shared by different rules. Such matches are included in
a set matchPool. A match is formally defined as a graph
morphism from LHS to the source graph, which satis-
fies the when conditions, but it is represented as a map
from variables, corresponding to nodes in the LHS pat-
tern, to object identifiers, corresponding to nodes in the
source graph, for the sake of presentation in this paper.
A match is said to be valid when there is a one-to-one
mapping between the variables in the source pattern
and objects in a source model, and when conditions in
when clauses are satisfied.
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Second, during the execution phase, each match is
processed by triggering the application of a MT rule,
which is represented as a MT step, denoted by r :−−−−→
in 7→ ς → −−−−−→

out 7→ ς, which consists of a pair of two
matches labelled with the rule name r, the match

−−−−→
in 7→ ς

for the input pattern of the rule with input variables in
and matched objects ς, and the match −−−−−→out 7→ ς for the
output pattern of the rule with output variables out
and the object ς that result from applying the rule.
Each match consists of a list of pairs, consisting of a
variable name in (or out) and of an object reference ς.
Vector notation is used to denote the list. When a rule
is applied, the source model is only used for query pur-
poses but the target model is constructed by adding the
pattern of the RHS instantiated with values from the
variables both in the LHS and in the RHS of where MT
steps. In addition, where MT steps may further expand
the structure of the target model. Whereas a when clause
denotes a condition that needs to be satisfied to trigger
the rule, a where clause expands the current transfor-
mation sequence by applying other MT rules implicitly.
That is, where clause is used to transform some source
elements into target elements, so that these can be used
in the calling rule. This execution model resembles the
application of forward rules used in triple graph gram-
mars (TGGs) [44], where the source graph is annotated
as rules are applied and only the target graph is con-
structed together with a link in a correspondence graph,
where each link denotes a MT step.

The where clause of a MT rule can also contain a
statement insertDependency(R, ς), with a rule name R
and an input matched object ς, which is used to de-
fine explicit dependencies between the current MT step
and MT steps of rule R involving ς in its match. This
statement makes the transformation engine aware of
user-defined dependencies between MT steps that may
exist due to features that are external to the transfor-
mation language, e.g., when Java collections are used
to share information between rules. The different types
of dependencies will be explained in §3.6.

A MT rule can also be equipped with undo actions,
which are used to express how to inverse the actions
performed in the RHS. Undo actions enable the use of
arbitrary data structures (e.g., Java collections), which
are external to the model transformation language, in
a MT rule while enabling incremental propagation of
model changes that delete parts of the input model.
Examples of how to manage explicit dependencies with
insertDependency and of how to manage side effects us-
ing auxiliary data structures with undo are given in §4.2.

In YAMTL, a model transformation is specified tex-
tually. In a MT rule, the LHS pattern is written tex-
tually and when clauses are encoded as filter conditions.

The RHS is writtern in terms of object templates where
each feature (attribute or reference) is initialized with
a lambda expression in Xtend, where Java collections
can be used to either add or remove elements to a
model. where clauses are encoded using the operator
fetch, which operationalizes the semantics of a where
clause, by finding a rule MT step that links the given
source elements to target elements. Helpers, which are
normally expressed using graph patterns in graphical
concrete syntax, are encoded using queries in Xtend
that traverse the model. A more detailed account of
YAMTL’s syntax and semantics can be found in [9].

3 Change-driven Model Transformations

This section presents the mechanism to propagate doc-
umented model changes δs, from a source model Ms to
a target model Mt, for a given model transformation
sequence t in an incremental way. Such propagation of
source model changes corresponds to the incremental
evaluation of a model transformation that has already
been executed, and which is available in the form of
a sequence of MT steps. For a model transformation
to be executed incrementally only for those excerpts
of a source model that have been modified, the MT
steps that witness the execution of the model transfor-
mation need to be augmented with dependencies that
track which parts of the source model are involved by
it. The YAMTL transformation engine [9] has been ex-
tended with two modes of execution: initialization, a
model transformation is executed in batch mode gener-
ating a model transformation sequence, using the orig-
inal batch semantics [9], while tracking those parts of
the source model involved in MT steps as dependencies;
propagation, the model transformation is executed in-
crementally for a given source model change. Once the
initialization is done, any number of source documented
model changes δs can be propagated.

Given a source documented change δs between a
source model Ms, already synchronized with a target
model Mt via a model transformation t : Ms

∗−→ Mt

(where ∗−→ denotes a sequence of MT steps), and a
changed source model M ′s, the transformation engine
propagates the model change δs along t. The effect of
this forward propagation is the application of a model
change δt on the target model Mt.

In the following subsections, we explain the different
phases of the new execution modes, initialization and
propagation, in more detail. First, an explicit concep-
tualization of the relevant components of the propaga-
tion mechanism is presented in §3.1, segregating them
from implementation details. As the initialization mode
faithfully corresponds to the batch execution of a model
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Fig. 2 Object execution model.

transformation, the discussion of this mode focuses on
the type of dependencies that are implicitly injected in
the transformation engine in §3.2. The standard EMF
Change Model is summarized in §3.3 for the sake of self-
containment. The discussion of the propagation mode
focuses on its two main phases, namely impact analysis
and change propagation, which are explained in sec-
tions 3.4 and 3.5, respectively. The different types of
dependencies that are traced are presented in §3.6, ex-
plaining how explicit dependencies affect impact anal-
ysis and change propagation. The transformation used
in the VIATRA CPS benchmark is described in §4.2.

3.1 Execution Model

This section presents an outline of the main concepts in-
volved in the incremental propagation of source changes
in YAMTL, to be used in the following subsections.
Fig. 2 captures an excerpt of the syntactic concepts
used to represent model transformations in memory,
highlighted in grey colour, and the main semantic con-
cepts used both to track dependencies and to execute
model transformations incrementally. The model in
Fig. 2 can be regarded as a loose contract defining
the requirements that need to be considered in the de-
sign (and implementation) of a model transformation
tool, in order to adapt the proposed change propaga-
tion mechanism.

A rule is defined with an input pattern consisting of
several inElements, which define variables that need to
be matched, together with when clauses imposing a local

constraint on when the match is satisfiable, and with an
output pattern, consisting of several outElements, which
refer to binding expressions describing the side effects
of the rule in the output model. A ComputationStep rep-
resents either the application of a rule to a given input
match or the evaluation of a helper query. The rest of
semantics concepts will be explained in the following
subsections as they are needed.

3.2 Dependency Injection

Dependencies are defined by linking feature calls, that
is, when an attribute or when a reference is used in a
MT rule, to MT steps. When running a model transfor-
mation in initialization mode, the engine monitors the
source model and whenever an object ς is matched or
a feature call, represented as a pair (ς, f) of an EMF
object ς and a feature name f , is performed, a de-
pendency is injected into the dependency registry. De-
pendencies are represented as references to the class
ComputationStep in the class FeatureCall in the object
model of Fig. 2. A dependency thereby links either an
object ς or a feature call (ς, f) to the computation steps
in which it is used. Such dependencies are detected
when a MT rule is processed, both during the matching
phase and during the execution phase.

In the matching phase, while finding a match for a
rule, the engine keeps track of all of the feature calls
used in when conditions. When a match is found to be
valid, the collection of dependencies is injected into the
dependency registry for the MT step that uses that
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Rule Source Match Target Match Dependencies from Ms

C->T C 7→ 1 T 7→ 1, PK_COL 7→ 4 (1,name), (1,att), (5, type)
C->T C 7→ 4 T 7→ 6, PK_COL 7→ 7 (4, name), (4, attr)
A->C A 7→ 2 COL 7→ 2 (2, name)
A->C A 7→ 3 COL 7→ 3 (3, name)
R->FK OTHER 7→ 5 COL 7→ 5 (5,name), (5,type), (1, name), (4,name)

Table 1 Analysis of dependencies for the initial MT t :Ms
∗−→Mt of Fig. 3.

match. Otherwise, when the match is not valid, the col-
lected dependencies are discarded. Additionally, when
inserting a match in the matchPool, the transformation
engine also records reverse matches as links between
matched objects ς and the MT step in which they are
matched. Such links are represented as ReverseMatches
in the object model of Fig. 2.

Dependencies may also be found when executing a
MT step, e.g., while executing initialization expressions
associated with object features, either attributes or ref-
erences, in model patterns in RHS and in where clauses.
An initialization expression, sometimes referred to as
binding expression, compute a value that is then bound
to an object feature. Such initialization expressions are
evaluated within the context of a MT rules and can re-
fer features of objects that have been matched by LHS
variables. In rule A->C of Fig.1, the initialization expres-
sion name = AN binds the value of the attribute name of
the matched object of type Attribute to the attribute
name of the newly created object. When an attribute
or reference is used, either set or queried, there is a
feature call that is injected as a dependency. In such
cases, the transformation engine implicitly injects a de-
pendency for the MT step every time a feature call in
the source model is detected. As a result, note that sev-
eral MT steps may depend on the same object ς, when
rules have more than one single input element, or on
the same feature call (ς, f).

Table 1 shows the dependencies that are found when
executing the transformation of Fig. 1 in initialization
mode from model Ms. Each row in the table represents
a MT step, where: the source match indicates where the
rule has been applied, the target match indicates what
objects were created, and dependencies refers to the set
of feature calls associated with a MT step. These de-
pendencies are stored as FeatureCalls according to the
object execution model of Fig. 2. Reverse matches are
extracted from LHS matches, by reading them in the
opposite direction. It is worth noting that the second
match of the rule C->T has less dependencies than the
first one because the rule R->FK, implicitly called in the
where clause, does not find any attribute.

Dependency injection is specified with an aspect
whose pointcut matches feature calls under a
user-defined namespace. By default all feature calls un-

der the specified namespace will be injected but this
can be narrowed down to specific packages or classes de-
pending on domain-specific needs. For example, when
run-time performance is important and/or memory re-
sources are limited. Hence, the model transformation
engine is entirely decoupled from the domain model at
design time. They become tightly coupled at compila-
tion time and, hence, at run time.

3.3 Representable Model Changes

The EMF Change Model [46] defines the language of
changes that are applicable to an instance of any other
EMF model. It is built-in in EMF and, therefore, avail-
able for any EMF-compliant tool. Moreover, it can be
regarded as a technology-independent language for defin-
ing model changes because it is defined as a meta-
model, which happens to be implemented in EMF. An
EMF model is represented using a set of root objects.
Each object is tagged with feature values, either at-
tribute values or reference values, or simply references.
There are two types of references, cross-references, sim-
ply called references, denoting the graph structure in
the model, and containment references, denoting struc-
tural (part-of) relationships among objects. Root ob-
jects in a model are effectively roots of hierarchies of
objects via containment references.

In this section, we describe how a documented change
is represented using the EMF Change Model and how
it can be automatically defined given any atomic model
change that is received at run time, i.e., a live atomic
model change.

In the EMF Change Model, a model change is repre-
sented as a ChangeDescription which contains a map of
objectChanges, which refer to those objects that are up-
dated in a model and, for each such object, it contains
a list of FeatureChanges. That is, a change description
describes whether root objects are added to the model
or deleted from it, and changes to feature values, within
a given object in the model. A FeatureChange (FC) refers
to the structural feature that needs to be updated and
provides the new value. For single-valued attributes,
a FeatureChange contains the new dataValue. For refer-
ences and multi-valued attributes, a FeatureChange in-
cludes a containment reference listChanges pointing to
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ListChange. ListChanges are used to represent addition
to, removal from, or movement within the given feature
values. In particular, movement only captures when an
object changes to a different index within the collection.
However, it does not capture structural changes, e.g.,
change of container, which are represented as a removal
from and an addition to the corresponding containment
references. When a FeatureChange refers to a contain-
ment reference, objects to be added are pointed by
objectsToAttach and objects to be removed are pointed
by objectsToDetach.

FeatureChanges capture changes to feature values for
an object but EMF also permits adding and removing
root objects to a model, which need not be contained
by any other object. Such changes are considered to
be performed on the resource itself and are represented
with ResourceChanges, one for each changed resource.
A ResourceChange (RC) contains the ListChanges for the
root objects of the corresponding resource, similarly to
multi-valued features. For a more detailed explanation
of the EMF Change Model, we refer the reader to [46].

Table 2 shows a classification of atomic model
changes that are representable with the EMF Change
Model as explained above. In the table, the column
cases refers to how many cases are considered in the
row, the column granularity indicates whether model
changes are atomic or composite, the column level indi-
cates whether the change is applied in a root object or
within an object, the column feature denotes the type
of feature involved, the column change action denotes
the type of change, the column change representation
indicates how the change is represented using the EMF
Change Model, the column DO flags whether the change
affects objects, the column DFC indicates whether the
change affects feature values. Note that moving an ob-
ject structurally−case 12 move (inter.)−is represented
in a composite model change by two opposite actions,
removing the object either from the root contents of
the resource−if it is a root object (case 2)−or from a
containment reference−if it is a contained object (case
10)−and adding it either to the root contents of the
resource−if it is to become a root object (case 1)−or
to another containment reference in another container
object (case 9). This case is not captured by the EMF
Change Model explicitly but the transformation engine
is able to infer it, as explained in the following section.

A model change, which may represent atomic and
composite changes, is defined as an instance of the EMF
Change Model and can be serialized. EMF also provides
facilities for applying them and reversing them. Fur-
thermore, EMF provides a change recorder, which en-
ables recording live changes as a ChangeDescription for
either a root object, a collection of root objects, a re-

source or a resource set. The recorded ChangeDescription
is the representation of a history model change [6], from
the changed model to the original one, which is opti-
mized. That is, atomic changes for the same feature of
the same object may be discarded or merged, as long
as the optimization process preserves reversibility. The
recorded ChangeDescription can be reversed represent-
ing a documented model change, capturing the origi-
nal model change performed by the user. This a docu-
mented model change can then be propagated along a
model transformation.

The EMF change recorder enables the possibility of
storing EMF change models to the point in which they
are propagated, enabling durability, saving memory re-
sources, and interoperability. Furthermore, recorded
(history) changes can be regarded as a rollback mech-
anism for implementing transactional model changes,
which may be performed live.

Given the model transformation sequence
t :Ms

∗−→Mt of Fig. 1, Fig. 3 shows examples of docu-
mented model changes δ, defined over the source model
Ms of the running example, which lead to a model
transformation sequence t′ : δ(Ms)

∗−→ M ′t . Such model
changes are representable as EMF model changes, i.e.,
operationally, but are graphically depicted using the ab-
stract syntax ofMs, using their state-based representa-
tion for the sake of presentation. Additions and changes,
including moves, are highlighted in grey colour. Objects
that are added, and thus created, have a new identifier.
Objects that are changed and/or moved preserve their
identifier. Removals are highlighted by using dashed
lines for the contour lines of the corresponding shapes.
The given model changes are instantiations of:

– model change a (case 4), changing the name of the
class Order to Invoice;

– model change b (case 1), adding a root class Product;
– model change c (case 9), adding a single-valued at-

tribute amount to class Item;
– model change d (case 10), removing the attribute

date from class Item; and
– model change e (case 11), structurally moving the

attribute date from class Item to class Order.

In the following subsections, the different phases of
the procedure for forward propagation of source model
changes is discussed and the aforementioned examples
will be used for illustrating them.

3.4 Impact Analysis

In this subsection, we discuss how source documented
model changes are analyzed in order to determine which
MT steps are affected. This analysis is comprised of
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Cases Granularity Level Feature Change action Change representation DO DFC
1,2 atomic root add/remove RC::listChanges X
3 atomic root move (intra.) RC::listChanges
4,5 atomic any single-valued att add/remove FC X
6,7 atomic any multi-valued att add/remove FC::listChanges X X
8 atomic any multi-valued att move (intra.) FC::listChanges X
9,10 atomic any ref add/remove FC::listChanges X
11 atomic any ref move (intra.) FC::listChanges X
12 composite any containment ref move (inter.) opposite remove X

and add actions
in cases {2, 10}/{1, 9}

Table 2 Summary of model change types with their representation in EMF.
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Fig. 3 Source/target metamodels, initial synchronized models and forward change propagation (a-e).
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Case DO DFC Rule Source Match Target Match changeMatchPool dirty?
a 4 − (4, name) C->T c 7→ 4 t 7→ 6, pk_col 7→ 7 X X
b 1 (6, ADD) − C->T c 7→ 6 t 7→ 8, pk_col 7→ 9 X
c 9 − (1, attr) C->T c 7→ 1 t 7→ 1, pk_col 7→ 4 X X

(6, ADD) − A->C att 7→ 6 c 7→ 8 X
d 10 − (1, attr) C->T c 7→ 1 t 7→ 1, pk_col 7→ 4 X X

(3, DEL) − A->C att 7→ 3 col 7→ 3 X
e 11 − (1, attr), C->T c 7→ 1 t 7→ 1, pk_col 7→ 4 X X

− (4, attr) C->T c 7→ 4 t 7→ 6, pk_col 7→ 7 X X

Table 3 Impact analysis of source model changes a-e.

three main steps: identification of atomic model changes
from a documented model change, update of the set of
objects potentially affected newly enabled rules, and
marking of MT steps impacted by changes.

Identification of atomic model changes. In the first step,
given a model change represented as a ChangeDescription
in the EMF Change Model, the transformation engine
infers which objects and which feature calls have been
impacted by changes. For objects, it also infers whether
an object has been added or removed. If an object is
moved, either within the same collection or structurally,
it is not considered as an addition or as a removal.

For affected objects, such information is recorded in
the set DO of dirty objects of the form (ς, ctype), where
ς is the affected object and ctype is the type of change
from the set {ADD, DEL}. To obtain a dirty object from
the model change, FeatureChanges and ResourceChanges
are traversed considering two cases. The first case hap-
pens when an object ς is added either to a containment
feature (for a FeatureChange) or to the root contents
of the resource (for a ResourceChange) and such object
is not removed elsewhere in the model change, which
could occur by removing it either from a containment
reference or from the root contents of the resource. The
second case happens when an object is deleted and it
is not added elsewhere in the model change. DO is aug-
mented with (ς, ADD) in the first case and with (ς, DEL)
in the second case.

For affected feature calls, such information is
recorded in the set DFC of dirty feature calls of the form
(ς, f), where ς is an object and f is a feature name. For
each FeatureChange of an ObjectChange, the dirty feature
call (ς, f) with the object ς referred by the ObjectChange
and the feature name f referred to by the FeatureChange
is added to DFC.

Table 2 shows how atomic model change types are
represented using the EMF Change Model (column
model change representation), internally, using the sets
DO and DFC. Table 3 shows the sets DO of dirty objects and
DFC of dirty feature calls for the source model changes
of Fig. 3, so that each model change is internally rep-
resented by two sets DO and DFC. Note that the sets DO

and DFC decouple the transformation engine from the
EMF Change Model and provide another entry point
for defining model changes programmatically, which can
be used for capturing atomic live changes received via
observers of change events2.

Update of the set of objects potentially affected by newly
enabled rules. For each dirty object (ς, ADD), the object
ς is added to the set of objects associated with the type
of an object ς, denoted type(ς). This set of objects is
referred to as the extent of an object type type(ς) and
it is used to compute matches for MT rules. The aug-
mentation of the extent of an object type with new
objects potentially enables new matches when rules are
matched during the change propagation phase. Π is
used to denote the union of all type extents involved in
a model transformation sequence.

Marking of impacted MT steps. In this step, MT steps
that are affected by the atomic changes in the source
model change are marked as dirty. For each dirty object
(ς, ADD) ∈ DO, the extent of type type(ς) is augmented
with ς. This will potentially enable new matches for
some rule during the change propagation phase. For
each dirty object (ς, DEL) ∈ DO, we obtain the list of
MT steps that are affected from the map of reverse
matches. Such MT steps will then remain transient and
the objects in their target match will not be referenced
from other objects in the target models. A transient
MT step is not realized and its effects are forgotten
when the model transformation ends its execution. In
particular, note that when processing root objects or
a containment reference, an object that is removed in
the model change is not present in the changed source
model and, therefore, it does not trigger the MT step
that had been executed in the initial transformation.

For each dirty feature call (ς, f) ∈ DFC we obtain the
list of MT steps that are affected from the registry of
dependencies. For each such MT step, the satisfaction
of its source match is checked. If such source match is
still valid, then it is inserted into changeMatchPool, the

2 Implemented as EMF adapters in EMF
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pool of matches that are used to apply rule applications
during the change propagation phase.

For each atomic change in Fig. 3, Table 3 shows
the marking of MT steps that are (re-)applied accord-
ing to the dependencies of Table 1. In Table 3, the
column case refers to the type of model change from
Table 2; the column DO indicates the set of dirty ob-
jects involved in the change, if any; the column DFC
indicates the set of dirty feature calls involved in the
model change, if any; the column rule indicates the
rule of a MT step affected by the model change; the
column source match indicate the objects involved in
the source match of the MT step; the column target
match indicate the objects involved in the target match
of the MT step; the column changeMatchPool indicates
whether the MT step is selected to be re-applied; and
the column dirty? indicates whether the MT step is
marked as dirty or not. Whenever a model change af-
fects more than one MT step, each MT step is added
in a separate line within the row for the model change.

In summary, if a MT step is re-applied, its current
source and target matches are included, it is marked
as dirty and included in changeMatchPool. If a MT step
is not to be re-executed, it is simply marked as dirty.
New MT steps, with fresh matches due to new objects,
are found in the matching phase of the model change
propagation phase, explained in the next subsection.

3.5 Model Change Propagation

After the impact analysis phase, model change propa-
gation proceeds by executing a model transformation
using the matching and execution phases, as outlined
in §2. Fig. 3 illustrates the propagation of source model
changes according to the model transformation of Fig. 1.
We highlight how incrementality has been considered in
these two phases below.

Matching Phase. During the matching phase (in
batch/initialization execution mode), matches for a
given rule are found by traversing objects from the ex-
tent of the types associated with the elements of the
source pattern of the rule, with the constraints specified
in the form of graphical patterns and when conditions. In
propagation mode, the transformation engine employs
the same pattern matching algorithm but it fetches ob-
jects from the type extent used for model change prop-
agation, initialized during the change impact analysis
phase. Therefore, new matches may be found for objects
that have been created by the source model change.
Those matches are inserted both into matchPool and
changeMatchPool, creating new MT steps. Table 3 shows
that two new MT steps are applied, one for rule C->T in

model change b, and one for rule A->C in model change
c.

Execution Phase. During the execution phase, MT steps
determined by the matches in
changeMatchPool are executed. Such matches originate
from the impact analysis phase, corresponding to MT
steps that are dirty and need to be re-executed, and
from the matching phase above, corresponding to new
MT steps.

The re-execution of a MT step is performed as in
the batch/initialization mode but for the creation of
MT steps. Whereas a newly applied MT step needs to
get its output objects initialized (instantiated for out-
put elements), a dirty MT step reuses the objects of
the target match and unsets their features. This avoids
loss of contextual information, which is not affected by
changes, when re-executing a MT step. In particular,
those references to output objects that emerge from the
external context are preserved. On the other hand, ref-
erences from those output objects are re-calculated by
re-executing the MT step. It is worth noting that the
transformation engine uses where clauses to define refer-
ences to objects that are created by other rules, which
in turn uses a cache mechanism to avoid re-executing
the MT step that produced it [9]. Therefore, when a
dirty MT rule is re-executed, the initialization of out-
put element bindings are performed again. However,
those bindings that are initialized in a where clause are
also initialized incrementally. That is, only those ob-
jects that belong to a match of a new MT step will
be transformed from scratch. References to already ini-
tialized objects will be simply fetched. These can be
updated in the calling MT step if needed. Hence, the
granularity of the target model change is as fine grained
(at binding level) as the source model change for the
underlying graph structure of the model.

3.6 Indirect Dependencies

In this subsection, dependencies (introduced in §3.2)
injected for MT steps are augmented by considering
all of the subsequent MT steps that can be affected
by a source model change. This involves considering
dependencies between computation steps and the type
of model changes that can be propagated along them,
characterizing when a model transformation can be ex-
ecuted incrementally.

There are two main types of dependencies: direct
dependencies, linking a feature call to a computation
step where it is used−as presented in §3.2,− and indi-
rect dependencies, linking a feature call to all compu-
tation steps that may be affected if the object feature
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Dependency Data Control Flow
helper→ trafoStep allInstances (implicit) where (implicit)
trafoStep→ trafoStep insertDependency (explicit) where (implicit)/insertDependency (explicit)

Table 4 Types of dependencies and how they are tracked.

is changed. That is, we are considering dependencies
between computation steps in order to infer whether
a change in an object feature value affects a MT step
that does not call that object feature directly. Hence the
name, indirect dependencies. In the following, indirect
dependencies, common in rule-based model transforma-
tion, are summarized indicating how they are captured.
Then the previous impact analysis and change propa-
gation phases are extended to consider them.

The algorithm, therefore, considers new features of
the model transformation language that had not been
discussed in [13]. On the one hand, implicit dependen-
cies between helper queries and MT steps enable the in-
cremental execution of the model transformation when
a helper needs to be re-evaluated. On the other hand,
explicit dependencies, with the statement
insertDependency, between MT steps, enable the incre-
mental execution of MT steps with side effects that
are encoded using programming facilities that are ex-
ternal to the model transformation language. Further-
more, deleting model changes can also be propagated
by considering undo actions for MT rules.

3.6.1 Injection of Indirect Dependencies

Indirect dependencies are recorded by injecting depen-
dencies between computation steps, as successor refer-
ences in the execution model of Fig. 2, where two differ-
ent subtypes can be identified: data dependencies, when
the data changed by one computation step affects a suc-
cessor computation step (either enabling it, disabling it,
or affecting its results), and control flow dependencies,
when the successor computation step can only be exe-
cuted after the predecessor computation step and there
is no necessary data dependency between them.

Given that helpers are evaluated at the start of the
transformation as query steps, a computation step can-
not be succeeded by a query step. The main types of
indirect dependencies are listed in Table 4, where the
column dependency indicates the predecessor of a de-
pendency, the column data indicates when there is a
data dependency between two computation steps, and
the column control flow indicates when there is a con-
trol dependency between two computation steps.

Data dependencies are injected when the operation
allInstances, used to fetch the extent of a type, is used
in helpers and when helpers are invoked in a MT step.

In addition, dependencies between MT steps are de-
clared explicitly with the statement insertDependency.
The scenarios where these dependencies arise are ex-
plained next.

Control dependencies are implicitly injected when
a where clause is executed and explicitly injected using
the statement insertDependency. For example, when the
user wants to impose some control flow dependencies
between rules with different priorities.

3.6.2 Outline of Extended Algorithm

Fig. 4 lists the extended algorithm for propagating
model changes, where the parameters are a model
change δ, represented as a ChangeDescription, a matchPool
with a collection of MT steps that witnesses the exe-
cution of a model transformation, the union of object
type extents Π, and the collection dependencies linking
MT steps, in matchPool, to feature calls made during the
execution of the MT step. In Fig. 4, lines (3)−(5) corre-
spond to the impact analysis phase and lines (7)− (12)

correspond to the change propagation phase, which will
be explained in the following subsections. The steps in
the algorithm highlight the logic required for processing
indirect dependencies and data dependencies between
algorithmic steps. The resulting values of the algorithm
are: the updated matchPool, where MT steps may have
been added, modified or removed in order to propa-
gate the model change δ; the updated union object
type extents Π, where objects may have been added
or removed; and the updated collection dependencies,
where dependencies may have been added or removed
depending on the effect of the model change δ on MT
steps in matchPool. These resulting values enable the ap-
plication of the operation propagateModelChange on an-
other model change δ for processing sequences of model
changes iteratively. Consistency maintainers between
different models can be implemented as model trans-
formations that may enforce the consistency of those
models by propagating model changes along the corre-
sponding model transformations.

Throughout the rest of this section, excerpts of the
object model of Fig. 2 are referred to as parameters
in the algorithm, assuming that a directional associa-
tion is implemented as a map data structure, mapping
a source element to a target element, when the upper
bound of the association is one, or to a list of elements,
when the upper bound of the association is many. In
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propagateModelChange(δ, matchPool, Π, dependencies) = (1)
// impact analysis phase (2)
〈DO, DFC〉 := identifyAtomicChanges(δ) (3)
type := updateChangeTypeExtent(DO, DFC, Π) (4)
〈changeMatchPool, U, H〉 := markTrafoSteps(DO, DFC, Π) (5)
// model change propagation phase (6)
do { (7)
〈successors, U〉 := evaluateHelper(H, U) (8)
〈changeMatchPool, dependencies〉 := match(type, changeMatchPool, dependencies, successors, U, H) (9)
〈matchPool, dependencies, successors〉 := execute(changeMatchPool, dependencies, U) (10)
matchPool := undo(matchPool, U) (11)

} until (successors = ∅) (12)
return〈matchPool, Π, dependencies〉 (13)

Fig. 4 Algorithm for propagating model changes augmented with indirect dependencies.

particular, matchPool refers to the store of MT steps,
each of which includes both a source match and a tar-
get match, Π refers to the type extent that maps a type
to its population of objects, dependencies refers to de-
pendencies indicating the MT steps in which a feature
call is used, successors refers to indirect dependencies,
either between a query step and the MT steps where
they are used or between two MT steps. Two auxiliary
data structures are used in the algorithm, a list H of
affected helpers, those whose list Helper::classifiers
are affected by changes, and a list U of MT steps to be
undone, should the model change require so.

3.6.3 Impact Analysis

A model change affects an indirect data dependency,
with a predecessor computation step and a successor
MT step, when the model change affects the predecessor
step as explained in §3.4. Indirect dependencies are im-
plicitly injected, in the clause where of a rule, when the
resulting value of the helper is used−using a query step
as predecessor. Other types of dependencies are cap-
tured explicitly with the operation
insertDependency(R, ς), with a rule name R and an in-
put matched object ς, to be used in an out element
action. This operator fetches all MT steps of rule R in-
volving the object ς in their source match and creates
indirect dependencies between the current MT step (as
predecessor) and them (as successors), where the oper-
ation insertDependency is invoked. User-defined depen-
dencies enable the incremental evaluation of MT rules
with side effects, defining which MT steps work with
the same shared variables. Thereby, the model trans-
formation language does not prescribe the type of data
structures that can be used to store side effects, facili-
tating interoperability with external libraries.

Three use case scenarios need to be considered when
dealing with indirect dependencies: a) objects are cre-
ated or removed, affecting the corresponding type ex-
tent, which is used by the allInstances operator in a
query step; b) a data structure is used to store side ef-
fects by the predecessor computation step, for example
a collection data structure that is shared among several
MT steps; and c) the predecessor step uses a helper. In
what follows, the impact analysis in §3.4 is extended to
consider indirect dependencies.

In case a), when a dirty object−either to be added
or to be removed−is identified in line (3) of the algo-
rithm, the helpers using expressions involving
allInstances that traverse the extent of the type of the
dirty object are singled out. The field
Helper::classifiers, from Fig. 2, is used to associate
a helper with the contextual type used in an expression
involving allInstances. In the marking of impacted MT
steps, in line (5) of the algorithm, helpers whose classi-
fiers are affected by changes are added to the list H.

In case b), when a MT step that changes a collec-
tion, which is shared between different MT steps, is
marked as dirty in line (3) and it is not re-applied, it
is not re-executed and the data structure would remain
populated with stale data. To avoid this situation, the
right-hand side of a MT rule is extended with undo ac-
tions (a formula over the right-hand side pattern), indi-
cating how to undo side effects. MT steps to be undone
are identified during the impact analysis phase, in line
(5), by checking which dirty objects that are removed
enable source matches of MT steps. Such MT steps are
added to the list U.

In case c), indirect dependencies are injected dur-
ing the propagation phase either when a helper is in-
voked, in line (8), or when a MT step with a statement
insertDependency is executed, in line (10). Line (8) of
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the algorithm identifies which MT steps need to be re-
executed by providing the list of successors. Line (10)

injects dependencies, via statements insertDependency
in rules, while MT steps are re-executed.

3.6.4 Change Propagation

When propagating source model changes with indirect
dependencies in line (10), the re-execution of the pre-
decessor computation step (either a query step with a
helper or a MT step) may invalidate the successor com-
putation step, whose validity needs to be checked and
re-executed if needed. The main algorithm in §3.5 is
then extended to consider affected query steps (involv-
ing helpers) and MT steps that need to be undone, as
identified in the previous phase.

Affected helpers are re-evaluated and successor MT
steps are marked as dirty in line (8). Matches for all
new objects are found in line (9) and, if MT steps are
to be executed fully (including actions in the right-hand
side), they are re-executed in line (10), as explained in
§3.5. This step produces a new map successors of indi-
rect dependencies if there are statements
insertDependencies in the rules of the MT steps being
executed. MT steps that remain dirty are then executed
using their undo actions in line (11), cleaning up any
stale data that may be left in shared variables.

Change propagation occurs in an iterative fashion,
starting from computation steps affected by the source
model change, and iterating over the steps above while
there are indirect dependencies between MT steps (due
to the evaluation of an operation insertDependency).

3.7 Domain-Specific Optimizations

A model transformation can be executed incrementally
without user specification overhead in declarative trans-
formations that do not use auxiliary data structures.
However, as model transformations are optimized us-
ing libraries that are external to the model transfor-
mation language, e.g., performing side effects on auxil-
iary shared data structures, some domain-specific logic
needs to be programmed manually as already explained
in previous subsections. That is, when actions affecting
object patterns in the right-hand side of a rule need to
account for the fact that a MT step may be re-executed.
The following cases need to be considered:

– when auxiliary data structures are used and an ob-
ject that is inserted in a shared collection in a MT
step, the re-execution of the MT step may insert it
again, and duplicates may need to be avoided;

– in a similar situation, when the MT step is invali-
dated, its effects result in stale data, which needs to
be refreshed using undo actions;

– dependencies between MT steps, due to the use of
shared data structures, need to be explicitly de-
clared using insertDependency statements.

Checks of this type are domain-specific and are defined
manually.

4 VIATRA CPS Benchmark

The VIATRA CPS benchmark [50] provides the specifi-
cation of a problem [52] solvable as a model transforma-
tion and a framework for comparing the performance of
different model transformation tools, with incremental
execution of model transformations.

In this section, we borrow material from [50] to
present the main idea behind the problem of the bench-
mark and explain how it has been solved with YAMTL.

4.1 Problem Specification

The main problem consists in deploying the specifica-
tion of a cyberphysical system (CPS). A CPS speci-
fies application types, whose behaviour is specified as
a state machine, and host types, specifying computa-
tional capacity (default RAM, CPU, HDD). In a state
machine, transitions may specify an action for sending
or waiting for a signal. A CPS also specifies a topol-
ogy of host instances to be used for deployment. In a
CPS model, application instances, which have an active
state, can be allocated to host instances.

A deployment model contains a topology of host in-
stances with deployed applications running on them,
where each application’s behaviour is given in terms of
states and transitions. Each application’s behaviour has
a current state and transitions may trigger other tran-
sitions. A transition is triggered when it is waiting for
a given signal and such triggers are recorded explicitly,
each sending transition refers to each target transition
that it triggers.

From a more technical perspective, given a CPS
model, a solution must generate a deployment model,
mapping host instances, application instances and state
machines to their corresponding counterparts in the
target model. The most computational expensive parts
consist in instantiating the state machine for each de-
ployed application, and in computing trigger references
in the deployment model. Moreover, such mappings must
be recorded by generating a traceability model instance,
which relates elements of a CPS model with those of a
deployment model.
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Rule Rule Type Advanced Features
CyberPhysicalSystem_To_Deployment (C2D) matched
HostInstance_To_DeploymentHost (HI2DH matched

ApplicationInstance_To_DeploymentApplication (AI2DA) matched undo
StateMachine_To_DeploymentBehavior (SM2DB) lazy

State_To_BehaviorState (S2BS) unique lazy
Transition_To_BehaviorTransition (T2BT) unique lazy explicit dependencies

Transition_To_BehaviorTransition_Trigger (T2BTT) matched, transient

Table 5 Outline of YAMTL Transformation Rules.

Solutions are implementable with a model transfor-
mation. The performance of solutions is measured by
taking the execution time of the transformation in dif-
ferent cases [51], which define different communication
models by modifying the topology of host instances:

– ClientServer: this case creates a forest of stars, where
each tree is formed by a server and several clients.
Transition triggers point from clients to servers.

– LowSynch: this case creates a CPS model where
state machines have only a few transitions with ac-
tions. Therefore only a few transitions are triggered.

– PublishSubscribe: this case is similar to the Client-
Server case, but both the communication and trig-
gering directions are inverted to have a single pub-
lisher send messages to subscribers.

– SimpleScaling: in this case application instances are
allocated uniformly to host instances, without im-
posing constraints on the communication topology.

– StatisticBased: this case uses model statistics from
industrial UML models mapped to the CPS domain.

In the benchmark, a solution transformation is exe-
cuted in a two-phased approach: first, it is applied to a
given CPS model and, second, after updating the CPS
model, the transformation is applied again. The bench-
mark also considers two scenarios for assessing the per-
formance of solutions: batch scenario, where the trans-
formation is executed in batch mode in both transfor-
mation applications, and incremental scenario, where
the transformation is executed incrementally, propagat-
ing only those model changes that are applied in the
source model in the second phase.

4.2 Solution to the VIATRA CPS Benchmark

In this section, the YAMTL solution for the VIATRA
CPS benchmark is briefly described, illustrating some of
the advanced features mentioned in previous sections.
The solution is available on GitHub [11].

Table 5 enumerates the rules that form the model
transformation definition. Each rule maps one object
from a cyber physical system to a deployment model
according to the benchmark transformation specifica-
tion [52]. In the table, the name of each rule indicates

which classes are mapped. In addition, the table also
highlights the type of rule and whether it uses advanced
features for managing incremental propagation.

The model transformation contains two helpers:
waitingTransitions and sendingTransitions, which group
transitions with a wait action and with a send action,
respectively, by their signal identifier and by their ap-
plication type identifier, in that order.

Rule C2D creates the root object of the deployment
model and rule HI2DH creates deployment hosts in it.
Rule AI2DA creates deployment applications with a
unique behaviour by invoking the rule SM2DB. This rule
is declared as lazy and every time it is invoked it trans-
forms a state machine into a fresh deployment behaviour,
and maps the state machine to the deployment be-
haviour in an auxiliary map for analysing reachabil-
ity of signals through the corresponding host instance
topology. Rule SM2DB instantiates the behaviour type,
represented as a state machine, by mapping states and
transitions using the rules S2BS and T2BT, respectively.
These last two rules are declared as unique lazy. The
final rule, T2BTT, is a matched rule with lower prior-
ity, that updates triggers in transitions with send ac-
tions by performing reachability analysis though the
host instance topology. Transitions with send actions
are matched with a when clause, represented as a filter
condition in the corresponding YAMTL MT rule. Trig-
ger references denote which wait transitions are trig-
gered from transitions with a send action. As it has
lower priority, it traverses all of the transitions once
they have been created in the deployment model by
the rule T2BT.

Rule T2BT injects explicit dependencies, using the
statement insertDependency, from MT steps of the rule
T2BT, processing a transition with a send action, to MT
steps of the rule T2BTT, updating the trigger reference
of the corresponding behaviour transitions. These two
rules are executed with different priority and they use a
map to share how state machine transitions are mapped
to behaviour transitions. T2BT creates an entry when
a behaviour transition is created and T2BTT uses this
information for computing trigger references. The use
of this shared data structure results in a data depen-
dency between MT steps of these two rules: modifica-
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tions in send actions of a transition may modify trig-
ger references in behaviour transitions. As explained
in §3.6, such type of indirect dependencies cannot be
inferred automatically because the transformation uses
programming constructs of the host language,
Xtend/Java, which are not managed by the YAMTL
transformation engine.

Rule AI2DA declares an action undo, defining how to
incrementally undo the side effect of a MT step that
creates a deployment application in case the input ap-
plication instance is deleted. This undo action is needed
because application instances are stored in an auxiliary
map, used for computing reachability of signals when
computing trigger references. Such map is not managed
by the transformation engine and is used to implement
domain-specific logic.

5 Performance Analysis

In the present work, we aimed at answering the fol-
lowing research questions: (RQ1) How does the over-
head imposed by the dependency injection mechanism,
both during the initial phase and during the incremen-
tal propagation phase, hinder performance? (RQ2) How
does our solution scale with respect to the size of the
given data set during the initialization phase? (RQ3)
How does our solution scale with respect to the size
of the given data set during the change propagation
phase? The methodology used below enables analysing
the scalability of the solution developed in YAMTL
both in absolute terms, by looking at performance re-
sults, and in relative terms, by comparing those perfor-
mance results with those of the other solutions, devel-
oped with state-of-the-art model transformation tools.

5.1 Methodology

For the empirical analysis of the incremental execution
of model transformations in YAMTL using the prop-
agation procedure presented above, we have used the
VIATRA CPS benchmark [52]. The model transforma-
tion definition implemented for our model transforma-
tion engine, named YAMTL-incr and presented in §4.2,
passes the sanity checks of the benchmark. The software
artifacts used in this section and the results obtained
are publicly available in a GitHub repository [10] and
YAMTL is available at https://yamtl.github.io/. The
experiments were run on a MacBookPro11,5 Core i7 2.5
GHz, with four cores and 16 GB of RAM. For the exper-
iments the following software was used: ATL/EMFTVM
(4.0.0); ATL SDK (4.0.0); CPS metamodels (0.1.0);
Eclipse (4.7.3); EMF SDK (2.13.0); JRE (build

1.8.0_72-b15); VIATRA SDK (1.7.2); and Xtend SDK
(2.13.0).

This evaluation is an extension of the one performed
for the batch component of the VIATRA CPS bench-
mark in [9]. From the original VIATRA CPS bench-
mark, two incremental variants of the transformation
implemented with EMF-IncQuery have been selected:
ExplicitTraceability (EXPL) [48] andQueryResultTrace-
ability (QRT) [49], out of which the first one is the best
performing solution up to now. In addition, a recent so-
lution for the CPS benchmark using ATL [16,14], with
the Active Object Framework (AOF), has also been in-
cluded in the evaluation.

These transformations have been extracted as inde-
pendent Java projects. Classes implementing them have
been kept intact in the new projects, including their
namespaces, so that errors are not introduced due to
lack of expertise. Although these two transformations
produce results that are different from the other trans-
formations, the main differences are due to reordering
of multi-valued references and we have considered them
valid for this evaluation. On the other hand, a bench-
mark measurement harness considering the best prac-
tices recommended by the VIATRA team [25] was de-
veloped in order both to fine-tune measurements and to
crosscheck results. This harness removes dependencies
to other components of the VIATRA CPS benchmark
so that experiments can be run locally.

All of the scenarios provided in the original bench-
mark were considered. The CPS model generator [53]
was used to obtain the input models to be used for
the analysis so that their size depends on a logarith-
mic factor. The biggest models considered, in the client
server scenario, consist of millions of nodes (10.16M)
and edges (27.53M) and are, hence, very large models.

For each tool and scenario, the experiments are run
in isolation, i.e., in a separate Java process. For each
of the input models, an initial experiment is performed
to warm up the JVM and, then, twelve more experi-
ments to measure performance. Each experiment con-
sists of four phases: model load and engine initializa-
tion, initial transformation, model change propagation
and model storage. In between each execution phase,
the harness sends hints to the JVM to run garbage
collection and waits for one second before proceeding
on to the next phase. The first phase includes the in-
stantiation of a fresh engine instance, avoiding inter-
ference between experiments as caches are not reused.
The change propagation phase includes the application
of the model change to the source model and its prop-
agation. Only initial transformation and model change
propagation times have been considered in the quanti-
tative analysis. For the results the median obtained for

https://yamtl.github.io/
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each of these two phases out of ten experiments is used,
after removing the minimum and the maximum results.

5.2 Results

In the solutionsATL, EXPL andQRT, the model change
is applied to the source model by directly modifying
the resource containing the model. In the solution with
YAMTL such model change was recorded and persisted
using the EMF Change Model as described in §3.3. To
analyze whether this feature could become a threat to
validity, a separate experiment was run by excluding
the query part of the model change (searching for the
objects to be changed) in the solution EXPL but this
change did not affect performance results perceptibly
and the original solutions provided by the authors of the
VIATRA CPS benchmark were considered. Therefore,
the actions performed during the propagation phase are
equivalent in all of the evaluated solutions.

Fig. 5 shows the performance results obtained, both
for the initial model transformation and for forward
model change propagation, for the models generated
for the different cases. Scales both for time (ms.) along
Y axis and for model size factors along X axis are log-
arithmic allowing us to compare the scalability of the
different approaches.

5.2.1 How does the overhead imposed by the
dependency injection mechanism, both during the
initial phase and during the incremental propagation
phase, hinder performance? (RQ1)

The measurements of the performance of the execu-
tion of YAMTL in batch mode (YAMTL-batch) over
the source model has been included in Fig. 5. It can
be seen that injection of dependencies incurs a small
penalty during initialization time, as expected.

5.2.2 How does our solution scale with respect to the
size of the given data set during the initialization
phase? (RQ2)

In the initialization phase, the VIATRA solutions
(EXPL and QRT) operate several orders of magnitude
slower. The ATL solution shows better initialization
performance than VIATRA although it was more
memory-demanding in some cases, e.g.,
publish-subscribe. The solution in YAMTL showed sim-
ilar scalability to other solutions but with a more effi-
cient run-time performance, in some cases (e.g., statistic-
based), with an improvement of several orders of mag-
nitude.

5.2.3 How does our solution scale with respect to the
size of the given data set during the change
propagation phase? (RQ3)

In the propagation phase, for the cases client-server,
lowSynch and statistic based, it can be observed that
whileYAMTL-incr exhibits a constant propagation time
(in µs.) for the source model change, the cost of the
other solutions depends on the size of the input model.
However, it was found out that this behaviour is not
generalized.

In the cases publish-subscribe and simple scaling,
whenever an application instance is created with a be-
haviour that contains a transition with an action wait
for a signal, then all behaviour transitions with an ac-
tion send for both the same signal and the same applica-
tion type identifier must be changed in order to trigger
appropriate transitions. In the YAMTL solution, the
behaviour transitions that need to be changed are desig-
nated in the explicit dependencies inserted in rule T2BT.
These explicit dependencies refer to the MT steps of the
rule T2BTT that change the triggers of these behaviour
transitions. As the re-execution of each such execution
step involves a search of those behaviour transitions
with wait actions that are reachable from behaviour
transitions with send actions, the computational cost of
the model change propagation increases with the size
of the target model change (including indirect depen-
dencies). One of the VIATRA solutions (EXPL) out-
performs YAMTL in these cases, possibly because the
trigger feature of a behaviour transition with a send ac-
tion is changed incrementally, whereas YAMTL recom-
putes all of the triggers for such a behaviour transition
within the MT step.

The worst case scenario is embodied by a source
model change that shares no context with the already
transformed source model. For such type of model
changes, a batch model transformation is more efficient.

5.3 Threats to Validity

To ensure construct validity, we have reused the VIA-
TRA CPS benchmark, which proposes a problem solv-
able with model transformations, including a random
model instance generator for different scenarios, test
cases to ensure the correctness of solutions and a stan-
dardized way of measuring performance across solu-
tions. However, the VIATRA CPS benchmark is de-
signed to compare the performance of solutions, as run
on top of a model transformation engine. Therefore,
there is a layer of indirection, and all claims regard-
ing scalability of transformation engines need to be re-
garded through the solution that is being executed.
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Fig. 5 Performance of initialization (left) and model change propagation (right).
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Regarding internal validity, the experiments were
performed with model instances generated by the CPS
random model generator and, once generated, the same
instance was used for all of the experiments. While this
ensures reliability across experiments involving differ-
ent tools, all of the experiments used the same model
instance. Intentional bias has been avoided by using a
benchmark proposed by the research community, where
solutions to the CPS benchmark have been proposed
by experts in the corresponding transformation tools.
YAMTL does not excel in all of the scenarios, although
the overall performance, combining running times in
the initial phase and in the incremental phase, are in-
deed highly performant.

Regarding external validty, while representative
model transformation tools with support from incre-
mental evaluation of queries and transformations have
been chosen from the research literature, no attempt
has been made at completely covering all model trans-
formation tools. Furthermore, the VIATRA CPS bench-
mark restricts solutions to those model transformations
using EMF as their underlying metamodeling frame-
work. While EMF is a de facto metamodeling frame-
work, there are model transformation tools that do not
provide in-built support for it. Any generalization of
results must consider these restrictions into account.

In the following section, the mechanisms used to
implement incremental execution of model transforma-
tions in VIATRA and ATL are discussed in more detail.

6 Related Work

In this section, approaches for incremental execution of
model transformation leading to the tools used in the
evaluation section, ATL and VIATRA, are discussed
first. Then approaches for bidirectional model trans-
formation which also provide support for incremental
evaluation are discussed at the end.

6.1 Reactive Model Transformation

Reactive model transformation [41,5] enables the prop-
agation of model changes from source models to tar-
get models on demand. State-of-the-art tool support
relies on notification mechanisms, enabling live detec-
tion of source model changes either for immediate pro-
cessing, as in VIATRA [5] and in ATOL [16], or for de-
ferred processing, as in ReactiveATL [41]. At present,
approaches providing support for immediate processing
are based on incremental evaluation of model queries
whereas those using deferred processing are not. Our

proposal also focuses on a coarse incremental execu-
tion of MT rules, where queries are not evaluated in-
crementally, requiring a small memory footprint while
keeping an acceptable performance when compared to
fine-grained evaluation approaches, as shown in §5.

In reactive model transformation, source model
change notifications are usually fine-grained and kept in
memory. Such notifications can only be detected when
the transformation engine is in memory (live) as well.
The use of a notification mechanism means that mod-
els are loosely coupled to the transformation engine.
Working with offline model changes, as in the proposed
model change propagation procedure, completely de-
couples detection of model changes from the transfor-
mation engine, freeing model change developers from
the overhead of having the transformation infrastruc-
ture in memory. The latter is only needed for propagat-
ing changes but not for defining them. In reactive ap-
proaches, when an observer receives a change notifica-
tion, information about the intent of the overall model
change, i.e., the contextual information relating differ-
ent atomic changes, is lost. This problem is avoided
using documented model changes, which may be seri-
alized for implementing distributed systems, enabling
their processing, e.g., aggregating composite changes
like the move operation, and optimization, e.g., reduc-
tion of atomic operations that are cancelled when com-
posed. We refer the reader to [19] for an additional dis-
cussion of change-based approaches against state-based
approaches.

In the following, we discuss the body of research
underneath the tools used in the experimentation.

6.1.1 ATL

ATL’s incremental execution mode [35] enables the in-
cremental forward propagation of model changes to tar-
get models. However, some features of ATL, notably
helpers, rules with multiple source elements and lazy
rules are not supported. In our approach, helpers and
the MT steps, including those corresponding both to
lazy rules and to unique lazy rules, that depend on their
evaluation are re-executed incrementally.

In [35], model changes are not explicitly represented,
as in our approach, and they are applied directly in
the model and notified to EMF adapters (observers of
change events). Moreover, only atomic model changes
were considered (element creation, element deletion,
property change), whereas we also consider composite
model changes and optimizations via the EMF Change
Model.

Furthermore, forward change propagation is live in
[35], regarding both models and model changes. In their
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approach, live model changes are notified when the
change is applied in a source model in an immediate,
synchronous way. This requires the source models to be
linked to the ATL engine, restricting the physical lo-
cation of the source models. In our approach, model
changes are given either as EMF Change Model in-
stances, which may be serialized, and are applied asyn-
chronously, or using a change notification API, which
allows changes to be applied synchronously.

The initial evaluation of an ATL transformation in
incremental mode collects dependency information,
which properties (either attributes or references) of
which objects, for each OCL expression that is eval-
uated. Once a model change is notified, either for a
filter condition or for a binding expression, dependency
information is used to re-evaluate the affected OCL ex-
pression, as a whole. Their approach is not optimal−as
described by the authors−requiring the re-evaluation of
OCL expressions even when changes in property values
do not affect the resulting value of the OCL expres-
sion. With lazy transformations [47], model changes are
propagated on demand when objects are accessed in the
target model.

Reactive ATL [41] builds on the expression injec-
tion mechanism of [35] to detect which parts of an ATL
transformation need to be executed and on lazy evalua-
tion of [47] to defer computation. This approach suffers
from the same limitations of [35] as explained above. In
ReactiveATL, model changes are applied in the source
model and injected in the transformation engine but
only applied when requested from the target model,
which is read-only (i.e., only the reactive engine can up-
date target models−source model changes can be prop-
agated to target models but target models cannot be
updated themselves directly). In our approach, feature
calls are tracked and model changes are analyzed to de-
tect which matched object features have been updated.
Thus, changes are detected at the binding level and MT
steps are re-executed while preserving the target con-
text that is not affected by the channge.

A different line of research on ATL addresses the
limitation of degree of granularity in model change prop-
agation, when evaluating queries, by means of active op-
erations [3]. These rely on the notion of box to designate
mutable values (either collections or singleton values,
which can be nullable) that can be updated. A box acts
as a notifier that alerts observers when the value is mod-
ified. An active operation relates input boxes to out-
put boxes modelling how model changes are propagated
along the evaluation of the operation. Such operations
facilitate fine-grained change propagation and preserva-
tion of collection ordering when an OCL query involv-
ing collection operations is re-evaluated incrementally

in the presence of some model changes [33]. These prop-
erties have been recently brought to ATL [16], allowing
the incremental execution of model transformations by
means of a compiler from the declarative excerpt of
ATL to Java using active operations.

6.1.2 VIATRA

In live model transformations [42], model changes are
applied to a model and detected by the incremental
pattern matcher that keeps the execution context of
trigger rules in memory (match set for the pattern and
shared variables). Although the different types of model
changes are classified, the notification of model changes
from the moment they are received to the point when
they are used in the pattern matcher is not specified.

Change-driven MT rules [6], manually defined by a
user, model the valid changes that can be performed
to a source model, explicitly representing how those
changes are propagated to the target model. MT rules
are augmented with guards that, when evaluated in
the context of the changes that are applied to a source
model, trigger the corresponding rule if it is an appro-
priate reaction for a given change. In our approach,
however, model changes are given at the instance level
and there is no need for a user to define the synchroniza-
tion of model changes by using change MT rules. All
possible changes that are valid within the EMF frame-
work, i.e., those model changes that are instances of
the EMF Change Model, can be propagated using the
proposed generic synchronization mechanism. That is,
a model transformation definition need not be aware of
the type of changes that can be performed.

Complex-event processing was integrated with
change-driven model transformation in [18], combining
serialization and exchange of model changes with live
model transformations in VIATRA. Our approach is
also based on live model transformations but is not re-
active. Our offline model changes describe self-contained
model changes, which may be atomic or composite, and
can be serialized and exchanged. As it has been em-
pirically shown, with the VIATRA CPS benchmark in
§5, the implementation of the proposed mechanism for
propagating model changes scales well and it is a feasi-
ble candidate for processing model changes that occur
at a high rate, in real time.

6.1.3 Other approaches

Tefkat [26] is a logic-based transformation language with
data-driven evaluation, where models are encoded in a
fact database. In Tefkat, the evaluation of declarative
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rule-based transformations is driven by a search for so-
lutions to a Prolog-like goal (query) by relying on SLD
resolution (Selective Linear Definite clause resolution).
After the first transformation, the execution environ-
ment is stored as a SLD tree, where the initial goal
is associated with the root node. Every time a goal in
the tree unifies with a rule, a child is created with the
target goal created by SLD resolution, partially solving
the previous goal. When a goal is resolved, Tefkat stores
the generated SLD tree augmented with dependencies
in order to support incrementality. In the SLD tree,
each branch represents a rule application and all pos-
sible resolution paths are represented. Tefkat augments
each fact with tags linking facts to the parts of the tree
where they are used, corresponding to our notion of de-
pendency. Source changes are represented as changes in
facts, and propagated incrementally: additions are used
to create new branches in the tree whereas deletions are
used to prune branches.

A strong point of Tefkat is that SLD resolution is
complete (all solutions can be deduced) and sound (no
wrong solutions are produced).

Partial evaluation techniques are applied in order to
execute QVT-OM (Operational Mappings), which are
used to specify unidirectional model transformation, in
an incremental way in QVTMix [43]. This approach re-
quires human intervention to anticipate where changes
can occur on source models using a tagging mecha-
nism for declaring variable parts. QVTMix then pre-
computes the intermediate results of the transforma-
tion that do not depend on variable parts of the source
model, which will be computed for each given model.
From a technical perspective, QVTMix manipulates the
abstract syntax tree of a transformation pre-computing
those parts that are static. Apart from change-driven
transformations, the other incremental approaches, in-
cluding ours, are more flexible as they do not rely on
meta-information on the expected changes.

6.2 Incrementality in bidirectional MT

Among bidirectional model transformation approaches,
Triple Graph Grammars (TGG), introduced in [44], are
a declarative approach for specifying bidirectional con-
sistency relations between models. Although our ap-
proach is not bidirectional, it is worth comparing how
incrementality is supported in operational TGG rules.
Incrementality was first introduced in TGG synchro-
nization in [23,24]. Efficient approaches for TGG syn-
chronization [37,40,38] avoid analyzing the whole model
by relying on dependencies which hint at the impact of
a model change directly. Precedence-based approaches
[37,40] keep a binary precedence relation over the set of

model elements in order to determine when creation or
deletion of a model element affects another one. While
[37] overestimates the actual dependencies by defining
them at the type level, others underestimate them re-
lying on user feedback [40] or on special correspon-
dences [24]. [38] decouples impact analysis of model
changes from consistency restoration by delegating the
former to VIATRA’s incremental pattern matcher,
which has a built-in dependency tracker, and by defin-
ing operational rules using a reactive model transfor-
mation approach. However, these two phases are still
tightly coupled using a synchronous communication
mechanism between the incremental pattern matcher
and the synchronization procedure since the pattern
matcher may trigger revocations/applications of for-
ward marking rules after revoking/applying one of them.
That is, the model synchronization procedure uses the
pattern matcher to know when synchronization termi-
nates. In the model change propagation mechanism pro-
posed in the present work, both the creation of new MT
steps and the revocation of existing ones cannot trig-
ger further applications because rule matches are com-
puted against the source model and they are unique,
unless explicit dependencies have been introduced with
the statement insertDependency. A new MT step may
be found when new elements are inserted in the source
model. On the other hand, when a MT step is revoked,
no other rule can be applied or a conflict would have
been detected when the rule was applied the first time.
When explicit dependencies exist, successor MT steps
are re-evaluated nonetheless.

Incremental evaluation of model analyses, involv-
ing model queries, has been studied in [31] with the
.NET Modeling Framework (NMF) [27]. NMF Expres-
sions are presented as the implementation of an incre-
mental computation system where the incrementaliza-
tion of a model analysis function can be regarded as a
functor. In NFM, generic incrementality is made pos-
sible thanks to the use of NMF expressions, where a
model analysis is syntactically represented as an ex-
pression tree, whose nodes correspond to instructions.
A dynamic dependency graph (DDG) representing each
executed instruction is built at run time. When a value
in the DDG changes, dependent nodes in the expression
tree are notified of the change, which is then propagated
up to the root of the expression tree until the value
of a subexpression does not change. NMF expressions
are extensible with specific incrementalized algorithms,
which take preference over the generic change propaga-
tion mechanism, in order to enable user-defined opti-
mizations. NMF has been used for bidirectional model
transformations in [30,29,28]. The scalability of NMF
has been studied from a model analysis perspective but
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not in a model transformation setting. A comparison
with our approach for model analysis was presented in
[12], where YAMTL showed better scalability.

Active operations, as supported by AOF [34] also
provide support for bidirectional change propagation
but this feature has not been yet surfaced through ATL.

To the best of our knowledge, among the tools dis-
cussed above, only NMF supports offline representation
of model model changes, and none of them use a stan-
dardized notation for them, such as the EMF Change
Model, which can be regarded as the de-facto standard
for representing model changes in the EMF modeling
tool ecosystem.

7 Concluding Remarks

The main contribution of this work is the design of
a model change propagation mechanism for executing
change-driven model transformations, which has been
implemented in YAMTL. Such a model change prop-
agation mechanism forms the foundation for develop-
ing efficient consistency maintainers between very large
models. The design of this mechanism has been isolated
from implementation details documenting the require-
ments that must be satisfied by a model transformation
engine in order to adopt it. Advanced model transfor-
mation constructs have been studied for analyzing the
impact of a model change in a source model, charac-
terizing the type of model transformations that can be
incrementalized. The novelty of the approach consists
in the use of a standardized representation of model
changes, which facilitates interoperability with EMF-
compliant tools, and in the use of dependency injection
mechanism, which allows the transformation engine to
be aware of model changes without having to rely on
an observer pattern implementation.

The VIATRA CPS benchmark has been used to jus-
tify that (1) the initial transformation in YAMTL in-
curs a small penalty with respect to its batch counter-
part and that (2) propagation of model changes can be
performed in real time for very large models. Moreover,
the presented mechanism and its implementation in
YAMTL is several orders of magnitude faster than the
up-to-now fastest incremental solutions in the bench-
mark. Our experiments have been performed using com-
putational resources found in a standard computer, dif-
fering from previous analyses. Hence, YAMTL shows
satisfactory scalability in incremental execution of model
transformations on very large models in a wide va-
riety of execution environments. While the VIATRA
CPS benchmark is a first step towards comparing in-
cremental execution of model transformations, it pro-
poses a fairly coarse-grained problem and additional

cases, for example in the Tool Transformation Contest,
should help in exploring the advantages and disadvan-
tages of the incremental execution mechanisms used in
each transformation engine.

Lines of future research consist in providing formal
guarantees on synchronization properties and the ex-
tension of the technique presented in this work for de-
signing and implementing low-latency systems where
propagation of changes can be performed concurrently,
both from source to target and from target to source.
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