
Code-First Model-Driven Engineering: On the Agile Adoption of MDE Tooling

Artur Boronat
School of Informatics, University of Leicester, UK

artur.boronat@leicester.ac.uk

Abstract—Domain models are the most important asset
in widely accepted software development approaches, like
Domain-Driven Design (DDD), yet those models are still im-
plicitly represented in programs. Model-Driven Engineering
(MDE) regards those models as representable entities that are
amenable to automated analysis and processing, facilitating
quality assurance while increasing productivity in software
development processes. Although this connection is not new,
very few approaches facilitate adoption of MDE tooling without
compromising existing value, their data. Moreover, switching
to MDE tooling usually involves re-engineering core parts of
an application, hindering backward compatibility and, thereby,
continuous integration, while requiring an up-front investment
in training in specialized modeling frameworks. In those
approaches that overcome the previous problem, there is no
clear indication − from a quantitative point of view − of the
extent to which adopting state-of-the-art MDE practices and
tooling is feasible or advantageous.

In this work, we advocate a code-first approach to modeling
through an approach for applying MDE techniques and tools
to existing object-oriented software applications that fully
preserves the semantics of the original application, which
need not be modified. Our approach consists both of a semi-
automated method for specifying explicit view models out
of existing object-oriented applications and of a conservative
extension mechanism that enables the use of such view models
at run time, where view model queries are resolved on demand
and view model updates are propagated incrementally to
the original application. This mechanism enables an iterative,
flexible application of MDE tooling to software applications,
where metamodels and models do not exist explicitly. An
evaluation of this extension mechanism, implemented for Java
applications and for view models atop the Eclipse Modeling
Framework (EMF), has been conducted with an industry-
targeted benchmark for decision support systems, analyzing
performance and scalability of the synchronization mechanism.
Backward propagation of large updates over very large views
is instant.

Keywords-Domain model, MDE, EMF, roundtrip synchro-
nization, algebraic specification, performance analysis.

I. INTRODUCTION

Agile methods do not provide guidance on design, and
naïvely assume that it emerges from each iteration, relying
on re-factoring to embed design decisions [1]. Such an
approach results in a possibly rather diffuse implementation
of the domain model. Domain-Driven Design (DDD) [2],
widely accepted approaches for building complex software
systems, regards application domain knowledge as the most
important asset for their design, relying on a model of the
domain for clarifying requirements with domain experts and

with developers. Uludag et al. showed how DDD facilitates
the integration of design practices, including the definition
of a domain model, in agile software development for large
systems [3]. However, it is difficult to systematize the design
of the domain model according to DDD [4].

Model-Driven Engineering (MDE) encompasses the ap-
plication both of modeling notation for representing such
domain and of model management tools for their automated
analysis and processing [5]–[7]. A number of studies have
investigated the state of practice of MDE [8]–[14], iden-
tifying core challenges that affect the adoption of MDE,
highlighting poor documentation, tool maturity, synchroniza-
tion of models with code. In addition, Seybold et al. [13]
remark a steep learning curve to use MDE tools, even for
well-seasoned Java developers. To adopt modeling practices,
Hutchinson et al. [8], [12] recommend a change of mentality
in the organization as a progressive and iterative process.
Whittle et al. [15] recommend more research on support for
facilitating the creative process of modeling and a stronger
emphasis on (simple) tools that can be embedded in software
development processes.

We propose an approach to adopt non-intrusive MDE
tooling in agile practices by cherry picking the most suitable
tool, either MDE-agnostic or MDE-aware, depending on
the task at hand. Developers can keep using the tools
(and programming languages) that they are familiar with.
MDE tooling can be applied for specific problems without
requiring a strong commitment, thereby fostering a gradual
application of modeling practices and, as a consequence,
learning MDE. Our approach facilitates flexible modeling
in technical spaces that are MDE agnostic, where a notion
of metamodel does not exist. We are thus approaching
flexibility from the point of view of interoperability. Building
domain models can be done using programming languages
familiar to developers, e.g., Java, facilitating the develop-
ment of executable prototypes that need not be thrown away.
While a model-first approach has undoubtedly many benefits
for software development, practitioners usually prefer a
code-first approach that delivers feedback quickly without
having to resource to heavyweight modeling frameworks.

In our work, we consider the Eclipse Modeling Frame-
work (EMF) [16], which is a mature Java-based meta-
modeling framework that unifies the use of Java, UML and
XML that can be used both for developing data-driven sys-
tems and for designing domain-specific languages. Accord-



ing to [17], EMF is still by far the most popular MDE tool,
within the Eclipse ecosystem, used in open source projects.
EMF augments Java with the possibility of exploiting the
meta-represented model through reflection facilities, XML
serialization, and with non-trivial facilities, like ensuring
systematic consistency of bidirectional associations, which
are common in many applications and usually implemented
ad hoc. Unfortunately, its adoption in the development of
existing applications breaks backward compatibility, which
is a highly regarded practice in agile software development
as its absence breaks continuous integration (and delivery).
Moreover, model-driven reverse engineering processes [18]
may also require non-trivial data migration processes, mak-
ing EMF rather a heavyweight technology.

While MDE-agnostic applications can be reverse engi-
neered [18], [19] or adapted [20], a few approaches [21],
[22] build interfaces with MDE technology for MDE-
agnostic systems at run time. These approaches have been
evaluated with a number of case studies used in industry.
A quantitative analysis of performance and scalability has
nonetheless not been performed with very large data sets.
Therefore, it is unclear to what extent such interfaces can be
used with state-of-the-art techniques. In this work, we have
implemented a bidirectional synchronization mechanism that
bridges MDE-agnostic (Java programs) and MDE-aware
(EMF-based) systems at the data level using techniques from
modern model transformation, including transformation of
feature values on demand and incremental propagation of
updates. This mechanism has been evaluated, consider-
ing performance and scalability perspectives, by using an
industry-targeted benchmark for decision support systems,
TPC-DS [23], that involves very large data sets. The con-
clusions of this research should help inform decisions when
adopting MDE technology, depending on the scalability
requirements of the system to be developed. In [21], such
decisions could only be taken for model cardinalities of up
to 116K elements, which are now raised to the millions.

The contributions of this work are summarized in this
paragraph. In section II, an algebraic presentation of domain
models (and view models) and of model instances, or system
states, (and views) is developed, describing the view update
problem at stake. The formalization is novel, revolving
around the notion of feature value (as opposed to object) as
unit of data, and relies on standard mathematical entities.
This formalization scaffolds the conceptualization of our
contribution independently of the chosen object-oriented
programming language and metamodeling framework, fos-
tering reuse of the proposed code-first MDE approach in a
variety of use cases within the object-oriented paradigm, and
in their implementation. In section III, we discuss a solution
to the view update problem by presenting a synchronization
model that is independent of technical spaces and then
discuss how it has been realized in EMF-SYNCER, using
state-of-the-art transformation techniques, including deferred

execution and bidirectional, incremental propagation of up-
dates, for syncing Java programs with EMF views at run
time. EMF-SYNCER does not require modifying existing
systems and guarantees backward compatibility. The formal
representation of the synchronization model adopts a declar-
ative stance, focusing on preconditions and key operation
properties that facilitate their correct behavior, without hav-
ing to deal with implementation intricacies. In section IV,
EMF-SYNCER is analysed, in terms of performance and
scalability by using the TPC-DS benchmark. The results of
this empirical evaluation are then used to discuss to what
extent, in terms of size of data sets, it is feasible to use
EMF-based tooling. In section V, related work is discussed,
concluding with some final remarks and future research
directions.

II. VIEW UPDATE PROBLEM

Our approach is inspired in the view update problem [24]
as we consider view models of existing domain models
that are implicit, and possibly scattered, in object-oriented
programs. A view model can be a faithful reflection of
the domain model, or a projection of it, but extensions
of view model classes involved in the synchronization are
not supported. This design decision is justified by the fact
that we are interested in a pragmatic application of MDE
technology to non-MDE object-oriented programs, without
losing information during synchronization. This does not
preclude a user from using additional classes to store auxil-
iary information during the MDE process, whose existence
will be forgotten by the synchronizer.

In the following subsections, we present an algebraic
formalization of models, of their instances and of updates,
concluding with an informal description of the synchro-
nization problem. This formalization lays the foundations
for presenting synchonization model in section III, inde-
pendently of specific programming/modeling languages (and
accompanying tool support).

A. Domain Models and View Models

An excerpt of a domain model representation in a Java
program is given in Listing 1, which declares the domain
class StoreReturns and decorates its fields with JPA anno-
tations1 that link the class to a table in a relational database,
used in the experiments in section IV. The corresponding
class in the view model, where only the fields of interest
have been captured, is represented in Figure 1 and, in
section III-C, the definition of a view model from a domain
model is explained in more detail.

In this work, we are interested in capturing updates at
the granularity level of (structural) features, within objects,

1The meaning of the used JPA annotations is not relevant for the
presentation of the work and they have been included to show that there
is non-MDE technology that is made available to MDE tools through the
EMF-SYNCER.



and they are treated as independent units. Therefore, object-
oriented domain models are represented as a set of (struc-
tural) feature values that are well typed, from which specific
objects can be derived. We start by defining the notion of
feature type and the notion of feature value

Definition 1 (Feature Type): Let t be a value type in-
dexed by the set {0}∪N of natural numbers as defined by the
following grammar t ∶∶= dt ∣ e ∣ c ∣ t→ t′, where: dt denotes
any primitive data type, such as String, Integer, Boolean,
etc., available in Ecore (and their counterparts in Java) [16,
pg 124]; e denotes any user-defined enumeration type; and c
denotes any class type, representing sets of object identifiers
o; and t→ t′ denotes sets of entries mapping a key of type t
to a value of type t′. A feature type fm ∶ c→ t where m is a
record (l, u,ordered ,unique, cont ,op) describing the usual
properties of a feature: a lower bound l, an upper bound u,
whether the feature is ordered or unique, whether it is a
containment, and the opposite reference − if any.

Note that a feature type uses value types t that are indexed
by {0}∪N, i.e. {0}∪N→ t. However, notation is abused and
we represent them by t, for the sake of simplicity, but their
values vi are represented with an explicit indexed i ∈ N.

A view model v(M) is represented by its set of feature
types. These can be either attribute values, when either t = dt
or t = e, or reference values, when t = c. Each feature type
denotes a (possibly infinite) set of feature values representing
the constituents of a model instance. A domain model M
can be regarded as a partial specification of a view model,
where some design decisions − e.g. multiplicity constraints
− are not captured nor documented, probably not intendedly.
Therefore the same representation can be used both for
domain models, where the m component is optional, and
for view models.
@Entity
public class StoreReturns {
@OneToOne(fetch = FetchType.LAZY)
@JoinColumn(name = "sr_returned_date_sk",
referencedColumnName = "d_date_sk")
private DateDim srReturnedDateSk;

@Column(name = "sr_return_time_sk")
private Long srReturnTimeSk;

@EmbeddedId
private StoreReturnsId srId;

@ManyToOne(fetch = FetchType.LAZY)
@JoinColumn(name = "sr_customer_sk")
private Customer srCustomerSk;

@ManyToOne(fetch = FetchType.LAZY)
@JoinColumn(name = "sr_store_sk",
referencedColumnName = "s_store_sk")
private Store srStoreSk;

@Column(name = "sr_return_amt")
private Double srReturnAmt;
...

}

Listing 1. Excerpt of Java Domain Class

Figure 1. Excerpt of View Model used for the TPC-DS Benchmark

For example, considering the abbreviations
StoreReturns as SR, StoreReturnsId as SRId,
Customer as C, Store as S, DateDim as D, the class
StoreReturns of Figure 1 is represented using the
following feature types:

srReturnAmt ∶ SR↦ EDouble

srReturnDateSk(l=0,u=1) ∶ SR↦ D

srId(l=1,u=1) ∶ SR↦ SRId

srCustomerSk(l=0,u=1,op=storeReturns) ∶ SR↦ C

srStoreSk(l=0,u=1,op=storeReturns) ∶ SR↦ S

Inheritance can also be considered in this representation.
A naïve, and verbose, strategy consists in defining feature
types for the class in which it is declared and for each of
its subclasses. More precisely, when a feature f is declared
for a class with name c with a type t and multiplicity
constraints m, a feature type fm ∶ c→ t is in the model
together with each feature type of the form fm ∶ c′ → t,
where c′ is the name of a subclass of the class with name
c. However, such formal representation is only used at a
conceptual level in our framework and end users can keep
using the corresponding notation in their technical space,
Java programs or EMF models in this work.

B. Domain Model Instances and Views

We use the notation v ∶ t for denoting that a value
v belongs to the domain of a type t, i.e. v ∈ JtK. For
representing values, we use families of values vi, denoting
sets {i ↦ v} for i ∈ {0} ∪ N. The notation for families
of values vi is abused and we also use it for representing
a specific value v, indexed by a given natural number i.



This confusion is disambiguated from the context where the
expression is used. When the context mentions one feature
value then vi refers to an indexed value, and it refers to a
family of values vi otherwise. Therefore, we will use the
predicate vi ∶ t to denote that all the values in the family vi
are typed with t.

Definition 2 (Feature Value): Given a feature type
fm ∶ c→ t, a feature value is defined as a mapping
f ∶ o↦ vi, where o ∶ c and vi ∶ t.

Given a model M, a model instance m is represented as
a set m of feature values f ∶ o↦ vi that are typed with the
feature types in M, and the instance of relation, at model
instance level, is denoted by m ∶M. The notion of model
instance may refer either to a domain model instance, or
system state, or to a specific view. When the component m
in a feature type fm ∶ c→ t specifies constraints, the notion
of feature value f ∶ o↦ vi is enriched as follows:

● cardinality constraints: the cardinality of a value family
vi is constrained as follows: m.l ≤ ∣vi∣ ≤m.u;2

● order is captured by the index i of a value family vi;
● unique: if a feature has the unique constraint,
m.unique , then, for any i, the set {i ↦ v} for a
particular feature value defines an injective mapping;

● containment integrity: if a feature f ∶ o↦ vi in m is a
reference and has the containment constraint, then for
any object o′ referred by f , there cannot exist another
containment f ′ in m, which also contains the object o′;

● bidirectional associations: if a feature f in m is a
reference belonging to object o points to object o′ and
has an opposite reference f ′, then the feature value
f ′ ∶ o′ ↦ oi, for a some i, also belongs to m.

C. View Updates
In our approach, MDE views, which are synchronized

with a domain model instance, can be materialized through
a persistence API in the MDE technical space, or it can be
used as a virtual view at run time. In both cases, views can
be updated and such updates are incrementally propagated
to the underlying domain model instance on demand. There
are two main cases of view updates: when root objects, w.r.t.
the containment hierarchy, are added or deleted, and when
feature values are updated. In what follows, we develop the
notion of update that is used in our synchronization model
and explain how an update is applied to a model instance,
which can be a domain model instance or its associated view.

Definition 3 (Atomic Updates): Given a model M and a
model instance m, such that m ∶ M, an atomic update is
represented as a pair (µ, f ∶ o↦ vi) ∈ ({upsert ,delete} ×
fm ∶ c→ t) for a specific value v indexed by some i.

According to this definition, an atomic update can only
affect one value in the family of values bound to the object
o through f .

2In EMF, the value −1 is used to denote the UML value many, ∗, but
we simply consider that ∗ is the infinite natural number.

The set ∆ of updates for a particular model M comes
equipped with a binary operation ⋅ ∶ ∆×∆→∆ so that, for
all given δ1, δ2, δ3 ∈ ∆:

● ⋅ is associative, i.e., (δ1 ⋅ δ2) ⋅ δ3 = δ1 ⋅ (δ2 ⋅ δ3),
● 1 is the identity element, i.e., δ1 ⋅ 1 = 1 ⋅ δ1 = δ1
● for any update δ ∈ ∆, there is an inverse delta δ−1 that

cancels the former, i.e., δ ⋅ δ−1 = 1.
Hence, (∆, ⋅) represents the set of composite updates

that can be defined as sequences of atomic updates δ ∈ ∆,
including empty and singleton sequences.

Definition 4 (Update Application): Given a model M
and a model instance m, such that m ∶M, a delta δ ∈ (∆, ⋅)
is applied to m, denoted by the expression δ(m), using the
operator ○ ∶ (∆, ⋅) ×M→M as follows:

(upsert , f ∶ o↦ {i↦ v})(m ⊍ {f ∶ o↦ (vi ⊍ {i↦ v′})}) =
(m ⊍ {f ∶ o↦ (vi ⊍ {i↦ v})}) (update)

(upsert , f ∶ o↦ {j ↦ v})(m ⊍ {f ∶ o↦ vi}) =
(m ⊍ {f ∶ o↦ vi ⊍ {j ↦ v}}) when ∀i, i ≠ j (insert)

(delete, f ∶ o↦ {j ↦ v})((m ⊍ {f ∶ o↦ (vi ⊍ {i↦ v})})) =
(m ⊍ {f ∶ o↦ vi}) (delete)

1(m) =m (identity)
(δ1 ⋅ δ2)(m) = δ2(δ1(m)) (composition)

where ⊍ represents disjoint union of sets.
In the equational presentation above, terms − with vari-

ables − are used in the left-hand side of the equations
to denote a search of the relevant feature values in given
model instance, through pattern matching. An upsert update
is characterized with the equations (update), which updates
the value v′ at position i with the new value v in the
feature f for object o, and (insert), which inserts a new
value at an index j that is not used. A delete update is
characterized with the equation (delete), where the expres-
sion {i ↦ v} characterizes the set of indexed values with
the value v, in case there are duplicates. Hence, deletion
has set semantics and all entries containing the value v are
deleted, irrespectively of their indexes. Equations (identity)
and (composition) define the base case of the inductive
definition of the application operator over the structure of
updates and that update application is compositional.

When considering updates, the following assumptions are
taken into account: an atomic update can be applied if
it refers to a valid feature type − i.e., updates are type
preserving − and to an existing object (type preservation); a
feature value whose cardinality is the lower bound cannot be
subject to a deletion (lower bound); a feature value f ∶ o↦ vi
with the unique constraint cannot be subject to an insert of a
value that is already contained in vi; a feature value whose
cardinality has met the upper bound cannot be subject to an
insertion, although it may be updated (upper bound); when a
reference value is updated and this reference has an opposite,
the update of the opposite reference is included in the update



(bidirectional reference integrity); an update describing a
move of an object from one container to another one is
defined in terms of an atomic deletion of the object from
the source container, followed by a upsert of the object to
the target container (containment integrity); when an object
is removed, all of its containments are removed recursively
and resulting dangling references are also removed − such
deletions are part of the update (delete cascade semantics).
These pre-conditions guarantee the correct behaviour of the
update application operator.

In this work, the consistency relation R between domain
models M and their view models v(M) is defined by
an isomorphism that maps feature types by name, taking
into account the name of their class as well. A domain
model instance m, m ∶ M, and a view v, v ∶ v(M) are
consistent when (m,v) ∈ R. An update δ on m introduces
an inconsistency that needs to be repaired by propagating δ
to the view v. Symmetrically, when an update δ is applied to
v, consistency needs to be restored by propagating it to the
model instance m. With this problem in mind, we proceed
to discuss a solution in the following section.

III. SYNCHRONIZATION OF FEATURE VALUES

In this section, we present our solution to the view
update problem for domain model instances in the form
of a conceptual synchronization model that is independent
from technical spaces. The synchronization model employs
a synchronization policy for specifying of the consistency
relation between domain models and view models, to be
taken into account when their instances are synchronized.

This synchronization model has been implemented in
EMF-SYNCER for obtaining EMF views from Java domain
model instances at run time, and for keeping them in
sync incrementally. EMF-SYNCER relies on the reification
of Java domain models as EMF view models, which can
abstract away implementation details from the Java source
code while making the domain model more stringent using
multiplicity and structural constraints.

In what follows, the default synchronization policy is
described, then the tool-agnostic synchronization model is
presented together with a brief description of its realization
in EMF-SYNCER. At the end, a method to obtain view
models, when these are not available, from (DDD) domain
models is discussed embedding MDE practices in agile
environments.

A. Default Synchronization Policy

The (default) domain-independent policy maps model
instances by relying on a one-to-one mapping between their
corresponding feature types, based on the name of the class
for which they are defined and on their name. This policy is
useful when the original domain model was clearly defined
and the view model could be extracted faithfully, either from
the whole domain model or from an excerpt of it.

The main synchronization policy is declared as a map

P ∶ Ω × (∆M, ⋅)→ Ω × (∆M′ , ⋅)
where Ω is the domain of synced links between object
identifiers O → O, which are used to map objects in the
source technical space to their counterparts in the target
technical space. P is an overloaded function, for updates
and for values, that takes a store of synced links and a value
in a source technical space and obtains its counterpart in the
target technical space, while tracking new synced links.

For mapping values, the definition of P proceeds by cases,
depending on the type of the value:

P (ω, v) = (ω, v) when v ∶ dt or v ∶ e
P (ω, v) = (let o′ = fresh(R(c)) in

((v ∈ ω) ?ω ∶ ω ∪ (v ↦ o′),
(v ∈ ω) ?ω[v] ∶ o′)) when v ∶ c

The most interesting case is when the value is an object
identifier. If it has been synchronized already, and it exists in
the store v ∈ ω, the target object identifier is simply retrieved
from the store with the expression ω[v]. When the object
identifier is not synchronized, a fresh identifier of the target
class R(c) is inserted in the store ω of synced links with
the expression ω ∪ (v ↦ o′) and returned.

The propagation P of atomic updates is defined in
equation (syncing) below, which translates values using the
expression P (ω, v) and then updates the two components of
the co-domain, the store of synced links and the view.

P (ω, (µ, f ∶ o↦ vi)) =
(ω ∪ P (ω, o).ω ∪ P (ω, v).ω,
(µ, (R(o.type, f).f ∶ P (ω, o).v ↦ P (ω, v).v)))

(syncing)
P (ω,1) = (ω,1) (identity)
P (ω, δ1 ⋅ δ2) = (P (ω, δ1).ω ∪ P (ω, δ2).ω,

P (ω, δ1).v ⋅ P (ω, δ2).v) (composition)

In equation (syncing), dot notation is used to access the
components of Pω(v), using _.ω for projecting the store of
synced links and _.v for projecting the value. In addition,
the expression o.type is used to obtain the class name of the
object type. Equations (identity) and (composition) define the
extension of P to a function on sequences of atomic updates.

Renaming of feature types and of classes are defined with
the R function using the identities R(c) = c for class names
c and R(c, f) = (R(c), f) for names f of features belonging
to class c, where the expression R(c, f).f obtains the target
feature name.

The operations P for updates and values have unique
inverse maps P −1. For updates, P −1 is declared as

P −1 ∶ Ω−1 × (∆M′ , ⋅)→ Ω−1 × (∆M, ⋅)
Its definition proceeds analogously, by replacing P with
P −1, ω with ω−1, and R with R−1.



B. EMF-SYNCER

The synchronization model has been implemented both
for domain models embedded in Java programs and for
EMF view models in EMF-SYNCER, available at https:
//emf-syncer.github.io. A syncing session in EMF-SYNCER
has two main stages: an initial stage where feature values
are synchronized on demand, and a (backward) incremental
propagation stage where updates are propagated from the
view to the underlying domain model instance.

In the initial stage, the domain model instance is described
as a big composite update and the result of this initial prop-
agation is that the source non-EMF model instance and the
EMF view are synchronized in the store ω of synced links.
Two synchronization strategies have been implemented, pro-
viding support for push-based initial synchronization, in
which all of the feature values are mapped to target feature
values, and for pull-based initial synchronization, in which
feature values are only initialized when they are accessed in
the target EMF application.

In the second stage, updates to either non-EMF or EMF
views are incrementally propagated in a push-based fashion.
The push-based strategy consists in applying the synchro-
nization policy to the view v, which is initially empty,
with (P (ω, δs).v)(v), where ω is empty initially and reuses
the initialized store of synced links for subsequent incre-
mental propagations. For propagating updates δt back to
Java domain model instances m, the inverse synchronization
policies are applied with (P −1(ω−1, δt).v)(m).

For the initial synchronization of model instances, the
tool takes advantage of the fact that there are no updates
of existing feature values or deletions of objects, and the
representation of model instances as deltas is circumvented,
as the type of the delta, µ, is known. The computational
cost of the push-based synchronization strategy is linear
in the size of feature values, which can be undesirable
for the initialization phase for very large model instances.
Subsequent incremental propagation of updates, once the
model instance has been synchronized with its view, is
usually instant, as shown in the experimental results, because
the size of updated feature values tends to be a fraction of
the original model instance size. That is, updates can be
propagated in real-time − in less than 1 ms. for updates
affecting about 103 objects and in ms. for updates affecting
about 105 objects − where objects may contain several
feature values.

The implementation of this synchronization policy makes
use of the fact that feature values can be indexed by the
object identifier and by the feature name so that the search
for the feature value to be synchronized is obtained in
constant time. The pull-based synchronization strategy, only
available for the initial stage at the moment, is also linear but
only in the size of the feature values that are accessed in the
actual computation in the EMF application, thus avoiding

unnecessary propagations for executing the task at hand.
We refer the reader to section IV, where we justify the
pragmatism of the pull-based strategy when dealing with
benchmark model queries and updates.

C. Domain Model Reification

MDE-agnostic domain models can be explicitly repre-
sented using an appropriate modeling language. This process
is called reification3 and, in this work, is also used to con-
cretize design decisions, that may have been deferred or not
taken inadvertently. In this section, we discuss advantages
of using MDE for developing applications, a number of use
cases where MDE tooling can be adopted and a method for
building EMF view models from Java source code.

Modeling and Abstraction: Regarding the base (source)
code, reification can be regarded as the means to embed
modeling practices in agile software development processes
in projects where modeling is used at different levels of
formality: when there is no clear domain model in the
application, and when there is a domain model. In the first
case, reification becomes a modeling process that may help
either to capture the main concepts and structural constraints
intermingled in the source code, to refactor the application,
to abstract the existing domain model, or to document the
design (architecture) of the system. Abstraction is supported
by selecting classes and structural features that need to
belong to a view model. In the second case, reification brings
advantages that stem from the level of expressiveness in the
target modeling notation, refining a domain model by adding
multiplicity (e.g. in structural features, uniqueness, ordering,
optionality) and structural constraints (e.g. in references,
bidirectional references, containments). That is, reification
helps in refining design decisions that could not be captured
earlier due to a lack of appropriate notation for capturing
the domain model in the source code.

Use Cases: Depending on the existence (or lack) of
a view model, there are two main types of use cases in
which this reification process can take place: when the
view model does not exist, and when the view model
already exists. In the first case the view model has to be
defined explicitly, which involves using a modeling tool.
Use cases that fall under this category correspond to re-
engineering of an application as a model-driven application
or to the application of MDE technology to implement parts
of the business logic of the application. In the second case,
reification of the domain model has already happened. Use
cases that fall under this category correspond to development
of executable interfaces between MDE-agnostic and MDE-
aware systems, re-engineering of an application as a model-
driven application, or even model versioning when the
source domain model is already explicitly represented.

3https://en.wikipedia.org/wiki/Reification_(computer_science)

https://emf-syncer.github.io
https://emf-syncer.github.io
https://en.wikipedia.org/wiki/Reification_(computer_science)


A Reification Method Using EMF: In what follows,
we describe a reification method that captures the static
part of a domain model, implicitly available in the source
code, using the technologies that we have used to implement
our synchronization model. On the one hand, we use Java
programs as the domain model and EMF as the target
modeling framework, where view models are represented
as Ecore models. EMF provides an import facility that
reifies Java programs as Ecore models. Such facility assumes
that object types are defined as interfaces, which can then
be annotated with modeling information (e.g. multiplicity
constraints and structural constraints mentioned above) [16]
that is not present in the source code. On the other hand, the
implementation of the domain model may include domain-
specific abstractions, e.g. queues, of the base domain model
that do not have a direct representation in EMF. Such ab-
stractions need to be modelled in the view model explicitly,
possibly requiring a domain-specific synchronization policy.

IV. EMPIRICAL EVALUATION

In this section, we investigate whether the proposed syn-
chronization model is a pragmatic approach to adopt MDE
tooling by checking to what extent EMF-SYNCER allows us
to apply EMF-based tools to a representative Java program
at run time. Two main research questions are considered:

RQ1: Does the time overhead imposed by the synchro-
nization algorithms, both during the initial phase and during
the incremental propagation phase, hinder the pragmatism
of the approach? For the analysis of this question, two di-
mensions are considered: the time taken for syncing feature
values, and the time taken to perform tasks (queries and
updates) with them.

Regarding the first dimension, an implementation of a
basic algorithm that maps Java objects to EMF objects
is considered. This algorithm is domain-specific − that is,
specific to a domain model, − can only be executed in
batch mode and does not offer synchronization. Therefore its
raw performance sets a baseline for comparing the overhead
incurred by additional functionality.

Regarding the second dimension, we are using the TPC
Benchmark DS [23]. The purpose of TPC benchmarks is
to provide relevant, objective performance data to industry
users and the current version of the TPC-DS benchmark
considers emerging technologies, such as big data systems.
This benchmark allows us to generalize our findings to
common functionality found in decision support systems
used in industry and that may involve very large data sets.

Five tasks have been analyzed: a selection of the store
returns corresponding to a given customer (Q1) together
with an update that adds one store return to the customer
(B1); an invariant that checks that store returns have valid
identifiers (Q2); and a typical big data query, extracted from
the benchmark [23, B.1], which finds customers who have
returned items more than 20% more often than the average

customer returns for a store in the state ‘TN’ for the year
2000 (Q3), together with an update for all of the retrieved
customers that deselects them as preferred customers (B3),
by setting a feature value in each customer instance.

These five tasks have been implemented in SQL, using the
query template facilitated in the benchmark specification for
Q3, in Java and in EMF. The SQL implementation executes
SQL native queries via the JPA interface considering that
they only return lists of strings, minimizing fetching time.
The Java and the EMF implementations are exactly the same
but for the implementation of the domain classes, which
are declared in a different namespace. In addition, the Java
domain classes are linked to a MariaDB relational database4

via JPA and the EMF domain classes only contain the feature
values, thus forming a view model, that are relevant for
the tasks to be computed. The correctness of the Java/EMF
queries is cross-checked with the results obtained with the
corresponding SQL queries for each database every time a
query is executed.

As a collateral effect, the experimental setup for the
benchmark is also illustrating the use case where data stored
in a relational database is made available as EMF model
instances, reusing JPA providers widely used in industry,
e.g. Hibernate, without having to rely on EMF persistence
solutions, such as CDO, which requires knowing both EMF
and JPA [13]. On the other hand, Java objects are assumed
to be in memory at run time because the problem of fetching
model instances from disk or from an external store is out
of the scope of this work. Therefore, loading time is not
relevant for the research questions at hand and has been
excluded from the analysis.

RQ2: Does the synchronization algorithm scale well
with respect to the size of the given data set in the Java
application? For the analysis of this question, databases of
different sizes have been generated using the Java port of
the TPC-DS benchmark5, which allows for no sexism in the
generated data set6 and this has been the preferred option.
Table I shows a summary of model instance sizes involved
in the experiments. A size factor on a logarithmic scale (with
base 2) has been used to increase the size of the factor in
order to be able to experiment with a number of databases in
a standard computer. The baseline object mapper traverses
the graph of Java objects in memory and has been used to
obtain the cardinality of the model instances involved, noting
that the actual number of objects in memory is twice the
size mentioned in the table, given to the Java/EMF duality
that EMF-SYNCER maintains. The other columns show the
cardinality of the model instance that has been synchronized,
after the corresponding query was executed (Q1I, Q2I and
Q3I), and the cardinality of the set of feature values that

4Version 10.2.11-MariaDB with INNODB 5.7.20.
5https://github.com/Teradata/tpcds
6In the official TPC-DS benchmark, only males are chosen as managers.

https://github.com/Teradata/tpcds


is propagated incrementally after the update was performed
(Q1B and Q3B).

A. Experiment Setup

The experiments were performed on a computer with a
quad-core processor 2.5 GHz Intel Core i7 and 16 GB RAM,
using Java SRE 18.9, using Java HotSpot 64-Bit Server VM
18.9, and the default G1 Garbage Collector was configured
to start concurrency GC cycles at 70% heap occupancy
with a maximum GC pause of 200ms. These parameters
were coupled with a maximum heap size limit of 12GB and
an aggressive heap usage strategy, minimizing interferences
with processes external to the experiment. Pauses due to
garbage collection should be avoided for small databases
where response time is of a few ms, or even µs.

Factor Mapper Q1I Q1B Q2I Q3I Q3B

2−4 55463 35 3 47850 31538 883
2−3 84166 13 3 71648 48342 1338
2−2 167242 5 3 143510 95487 2708
2−1 332987 5 3 287466 189253 5654
20 664036 9 3 575028 376522 11727
21 1288030 11 3 1150570 712745 23231
22 2527000 11 3 2299130 1377435 46098
23 5006596 15 3 4601328 2705932 54806
24 9408198 61 3 9206178 4805109 124447

Table I
SIZES (NUMBER OF OBJECTS)

Figure 2 shows the time taken (in ms) by the three
queries in SQL, Java and EMF. The Java application is
using lazy (JPA) associations between domain classes and
these are initialized when loading data from the database.
In addition, the Java queries have been executed twice
minimizing the impact of lazy object loading (Java 1st) and
only the time taken by the queries in the second iteration
(Java 2nd), where objects are already loaded in memory, has
been considered. In EMF, each query has been performed
twice to measure the impact of deferred initialization in
the synchronizer: the first time (EMF 1st) corresponds to
query time mixed with feature value initialization while
the second time (EMF 2nd) is mostly query time. In the
second iteration, there are still feature values whose value
corresponds to null values (in the case of one-bounded
references) or to default values and EMF-SYNCER does not
distinguish them from EMF feature values that have been
initialized with default values already. Performing a check
to avoid such cases turned out to be more expensive than
performing the translation.

Figure 3 shows the time taken (in ms) by the baseline
object mapper and by the synchronizer for each query. The
time taken by the baseline mapper reflects the time taken
by the translation of the whole domain model instance into
EMF. For each query, the time taken by the synchronizer

has been monitored in two stages: initial synchronization
together with deferred initialization of features of values
when executing the correponding query (Initialization), ex-
cluding the time taken by proper query execution; and during
backward propagation (Backward). In Q2, we have not
considered updates and, consequently, there is no Backward
component.

The times reported are average times (in ms) extracted
from 1000 iterations for experiments for size factors up to
2−1, and from 100 iterations for the rest of cases, but for
size factor 24, where 10 iterations were run. The first 10%
of results have been considered as warm up exercise for the
JVM and have been excluded from the analysis. The raw
data together with the tools to replicate the experiment are
available at https://github.com/emf-syncer/emf-syncer.tpcds.

B. Analysis and Interpretation of Results for RQ1

The initial synchronization algorithm is linear in the size
of the list of objects given and the propagation algorithm
(both from Java to EMF and from EMF to Java) is linear
in the size of the update. From the results obtained, plotted
in Figure 2, Java queries (e.g. Q3), including queries over
synchronized EMF views, are more efficient than the SQL
queries run on MariaDB via JPA, once the excerpt of the
database relevant for queries is available in memory as
object instances. The reason for this being that contextual
information is already available in memory for evaluating
the query whereas SQL queries have to traverse very large
tables in the database to find that initial context.

Figure 2 shows that EMF-SYNCER introduces some
overhead when computing queries over EMF objects when
comparing the same queries over Java objects, even when
deferred synchronization is resolved the second execution in
Q1, Q2 and Q3. This is due to the instrumentation in EMF
code performed by EMF-SYNCER, which, for example,
needs to check whether an EMF feature value has been
initialized or not in the presence (or lack) of default values in
a Java feature value. Time used in EMF queries (EMF 2nd)
should thus be understood as the performance of queries run
on synchronized EMF views.

Synchronization time is split in the time used in the initial
phase and in deferred synchronization of feature values
once they are requested. EMF-SYNCER thus balances the
synchronization workload and tailors it to the computa-
tion task to be performed. Both times are aggregated as
Initialization time and, in Figure 3, it can be seen that
the initial synchronization of 664K objects takes about one
second. In practice, the end user application will experience
a split of this time in the initial phase and the rest when
feature values are requested for the first time in a query.
Deferred synchronization resolution occurs once and for all,
that is, a feature value is synchronized the first time it is
accessed, and stays synchronized for subsequent accesses.
EMF feature values corresponding to Java feature values

https://github.com/emf-syncer/emf-syncer.tpcds


0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

1000.0000

10000.0000

0.0625 0.125 0.25 0.5 1 2 4 8 16

Tim
e (

m
s.)

Size factor

Q1

SQL Java 1st Java 2nd EMF 1st EMF 2nd

10

100

1000

10000

100000

0.0625 0.125 0.25 0.5 1 2 4 8 16

Tim
e (

m
s.)

Size factor

Q2

SQL Java 1st Java 2nd EMF 1st EMF 2nd

1

10

100

1000

10000

100000

0.0625 0.125 0.25 0.5 1 2 4 8 16

Tim
e (

m
s.)

Size factor

Q3

SQL Java 1st Java 2nd EMF 1st EMF 2nd

Figure 2. Query Times and Scalability (Q1 left, Q2 middle, Q3 right)

0.01

0.1

1

10

100

1000

10000

55 84 167 333 664 1,288 2,527 5,007 9,408

Ti
m

e 
(m

s.
)

Reference model size (in thousands of objects)

Baseline Q1_Initialization Q1_Backward Q2_Initialization Q3_Initialization Q3_Backward

Figure 3. Scalability of Synchronization Mechanism

that are not initialized are a special case as EMF-SYNCER
cannot distinguish them from initialized feature values.

Regarding synchronization times, in Figure 3, while
the baseline mapping of objects (Baseline) is more effi-
cient when comparing it with the initial synchronization
of large models, subsequent incremental synchronizations
(Backward) offer a much better performance (more than one
order of magnitude) than re-executing the baseline mapping
from scratch, especially for large model instances.

Therefore, when adopting EMF tooling at run time in
a EMF-agnostic JVM application, while there is an initial
synchronization overhead, considering both the initial phase
and deferred synchronization of feature values, this overhead
is reasonable and balanced between initial synchronization
and deferred synchronization. EMF-SYNCER tailors the

synchronization effort depending on the computation task
being performed, depending on the access to feature values.

C. Analysis and Interpretation of Results for RQ2

We consider two cases, when the resulting model instance
is small and when the initial data set is very large.

Table I shows that EMF-SYNCER only syncs those fea-
ture values that are accessed depending on the task being
performed. For example, while the batch object mapper
traverses 9.5M objects for a size factor of 24, EMF-SYNCER
only needed to sync 4.8M objects for Q3.

Figure 3 shows that EMF-SYNCER can synchronize small
excerpts of a model instance (in Q1) in a few ms indepen-
dently of the total size of the model instance. Moreover,
initial synchronization time together with deferred synchro-
nization time exhibits a reasonably linear growth w.r.t. the
size of model instance, which scales relatively well, when
compared with the performance of the baseline mapper.

Incremental propagation of updates is efficient, even for
large updates. For example, updating 124K objects takes
about 114 ms, in Q3_Backward, for a size factor of 24.
Forward incremental propagation (from Java to EMF, once
model instances are synchronized) is based on the same
algorithm and the same data structures and it, therefore,
exhibits a similar performance.

For large model instances, e.g. 23, in Q3, it can be
observed that initialization time (the sum of initial syn-
chronization time and deferred synchronization time) to-
gether with query time Q3 (EMF 1st), excluding loading
time, is actually better than the time used to computer the
same query with SQL. This shows that the scalability of
EMF-SYNCER performance can be better than the scala-



bility of query evaluation in industry database management
systems in some scenarios. The reason is the availability of
contextual information in memory that is readily exploited
when evaluating navigation expressions, which need to be
computed when using SQL. From the current experiment
results we cannot generalize this statement, however, as
there are situations (e.g., Q2) where relational operations,
together with appropriate indexing, lead to more efficient
results, subject to availability of expertise in both database
design and business domain.

D. Threats to Validity

Our synchronization model, and EMF-SYNCER, works at
the level of feature values. In Table I, the size of a model
instance has been presented in terms of the cardinality of
its constituents, without decomposing the basic unit of data
in the object oriented paradigm, the object. In addition,
using this granularity also facilitates comparison with other
benchmarks that use EMF for processing very large models.
One must take into consideration however, that performance
results may vary depending on the density of feature values
in objects and in how many of them are used.

The size of a database is generated according to a size
factor but the actual data is randomly generated and the
cardinality of the results obtained by the queries may not be
correlated for each database. For example, the time Q3B
for the size factor 23 corresponds to the update of 54K
objects and the time Q3B for the size factor 22 is for 46K
objects, and the actual size increase does not correspond
to the logarithmic scale used for the overall database size.
Object sizes together with an explanation of each task help
in scrutinizing the obtained results objectively.

V. RELATED WORK

The adoption of MDE tooling at run time was investigated
in [22], [25], [26] where given a system meta-model, pro-
viding the types of the runtime data, and an access model,
specifying how to manipulate the data through the API
of the system, the tool Sm@rt automatically generates a
synchronizer, which maintains the consistency of the model
(view in our work) and the system state (model instances in
our work) in the presence of concurrent updates, either to
the model or to the system state. Sm@rt has been used to
implement the execution model of QVT for synchronizing
models@runtime in [27], [28].

Sm@rt and EMF-SYNCER facilitate the adoption of MDE
tooling in MDE-agnostic systems at run time. However, in
Sm@rt, concurrent updates are allowed, while synchroniza-
tion is controlled by the client program in EMF-SYNCER.
More importantly, Sm@rt assumes the existence of an access
model that adapts the existing system, in order to inspect
its state at run time while EMF-SYNCER can inspect the
state of Java programs out of the box. Song et al. studied
the feasibility of adopting MDE tooling with a number of

case studies and performance was assessed with models
containing less than 1000 elements [28]. We have taken
this research one step further in order to scrutinize, from a
quantitative point of view, the extent to which it is pragmatic
to use MDE tooling in representative industrial scenarios,
which may involve large data sets.

A number of works, see survey by Bruneliere et al. [29],
use views over models, or model views, to facilitate in-
teroperability between different modelling languages. Such
approaches rely on an explicit representation of models,
which are considered views, i.e. data extracted from a
base model and that conforms to a viewtype given as a
metamodel, and usually offer expressive view type definition
languages or mechanisms to infer views based on algorithms
that rely on the existence of metamodels.

Our work focuses on view models instead, where domain
models that are used implicitly in software development and
that form the core part of the executable system are reified as
models, that can coexist with the system at run time. On the
other hand, relying on the observation that an EMF model
can be realized as a Java program, our approach can also be
applied to define model views.

Our approach is related to reverse engineering pro-
cesses [30] that extract designs from source code. This
is normally done with two purposes: program comprehen-
sion and design recovery. Program comprehension processes
normally involve three phases: extraction of data from
the source program, their representation as models, and
their visualization and exploration for obtaining information.
Tilley [31] presents a layered modeling to approach hy-
perstructure understanding by using the reverse engineering
environment Rigi, where a data model is represented using a
relational model, a conceptual model is represented using the
Telos language and a semantic network helps in visualizing
and exploring information in the domain model. Freitas
et al. [32] describe the use of DSLs for building reverse
engineering tools. In particular, an extraction language is
used to specify the extraction and storage of model data from
a source program, and a model language that is used for gen-
erating tools that represent models graphically, facilitating
their visualization and exploration. Building specifications
in those DSLs is a manual process that speeds up the
reverse engineering process. From a conceptual point of
view, our approach assumes that there is already an object-
oriented domain model implemented in the source code.
While reifying the domain model may help in improving
it, as explained in section III-C, the main objective is both
to reuse the design knowledge implicit in an executable
program and to enable the application of MDE techniques,
and their associated tooling, while maintaining backward
compatibility. For example, using MDE tooling, e.g. Sirius 7,
graphical editors can be developed for the domain model in

7https://www.eclipse.org/sirius/overview.html



order to visualize and explore views − and even edit them
− with the added advantage of updating the domain model
instance in the underlying Java program at run time.

Design recovery is combined with recognition of architec-
tural patterns and of component-based systems in [33]–[37].
Our approach does not consider any special notion of module
or component and it can only infer architectural aspects that
are already present together with the domain model in the
source code. Going beyond design recovery, DeBaud and
Rugaber [38], [39] related domain analysis to re-engineering
by proposing a method that constructed executable object-
oriented domain models that both capture the program
purpose and record it using abstract classes, which can then
be refined to implement the new program. This method can
be applied for building object-oriented programs from legacy
systems implemented in languages that are not necessarily
object oriented, improving productivity in the re-engineering
process. By relying on standard object oriented constructs,
such as abstract classes, their resulting domain models are
eligible to be mapped to view models using our approach,
thereby, enriching domain engineering with the application
of MDE techniques and tooling.

In model-driven reverse engineering [18], the abstract
syntax of a program is represented in a model (code can
be regarded as models), which can then be subject to
automated analysis, including code generation. For example,
Modisco [40] extracts models from Java programs that
conform to a Java metamodel using a batch process, and
the Epsilon JDT driver [41] performs this extraction process
incrementally. In our approach, a form model extraction
occurs during reification. However the objective is different,
while reification aims at defining a view model of the
Java program, which abstracts implementation details and
refines modeling decisions, in reverse engineering model
extractors produce an abstract syntax graph, abstracting
away concrete syntax, that contains implementation details
in full. While the second approach is fully automated, it
cannot be informed by designers and domain experts.

Ecoreification [20] is an approach for re-engineering Java
applications atop EMF, which provides backward compat-
ibility at the service level. The approach extracts Ecore-
conforming metamodels from Java code, from which code
that unifies Java classes and EMF classes is obtained. While
this work is motivated at the metamodel level, to enable the
application of model transformation languages, like ATL, or
graphical metamodeling editors, like Sirius, it can also be
applied for extracting domain models as motivated in our
work and is, therefore, the most relevant related work.

The key idea behind the Ecoreification approach is to
convert the original Java classes into adapters that delegate
accessors and mutators to their counterpart, newly-generated
EMF classes. In this way, the responsibility for defining state
is shifted to EMF classes, creating a strong commitment
with EMF, which becomes the interface for the persistence

layer of the application. While application state can still
be accessed via the original Java interface, thus ensuring
backward compatibility at the service level, the implemen-
tation of the persistence layer needs to be changed, which
is a drastic decision requiring migration of data for existing
applications.

VI. CONCLUSIONS AND FUTURE WORK

We have focused on the pragmatic aspects of applying
MDE tooling in agile environments that adopt a code-first
stance, prioritizing software over documentation. A roundrip
synchronization model has been presented for extending
MDE-agnostic software applications with MDE-aware func-
tionality, while preserving their original semantics, at run
time. Data synchronization occurs at the level of feature
values by using views that need not be materialized.

This synchronization model has been implemented in
EMF-SYNCER, providing deferred initialization of feature
values and incremental propagation of updates, whose per-
formance and scalability has been analyzed from a quan-
titative point of view. EMF-SYNCER can be used as an
infrastructure tool to embed modeling practices in agile
software project, which fosters experimentation with MDE
tooling in a non-intrusive manner. The tool, available as
an IDE-independent library at https://emf-syncer.github.io,
is easily reusable as a Maven dependency.

The results from our experiments with EMF-SYNCER
show that the propagation of large updates over models in-
stances consisting of millions of objects is instant. Moreover,
EMF-SYNCER can perform an initial synchronization with
millions of objects in reasonable time and that, for small
cardinalities, it is performed in instant time up to 500K
elements. In our experiments, the cardinality of elements
considered has been increased by one order of magnitude
with respect to the cardinality of the specimens considered
in previous experiments, e.g., [21], thus providing a better
insight on the capabilities of state-of-the-art MDE technol-
ogy for scenarios involving large data sets.

While preconditions required to facilitate the correctness
of the synchronization policy have been enumerated, formal
properties of the synchronization model, which relies on an
isomorphic consistency relation between domain models and
view models, have not been elaborated as part of the results.
In future work, we would like to explore more flexible
ways of specifying consistency relations, and their formal
properties, in order to implement effective interoperability
bridges across technical spaces for applying MDE tooling
practices wherever they add value.

ACKNOWLEDGMENT

The author would like to thank the anonymous reviewers
for helping in improving the article.

https://emf-syncer.github.io


REFERENCES

[1] R. L. Nord, I. Ozkaya, and P. Kruchten, “Agile in distress:
Architecture to the rescue,” in Agile Methods. Large-Scale
Development, Refactoring, Testing, and Estimation. Springer,
2014, pp. 43–57.

[2] Evans, Domain-Driven Design: Tacking Complexity In the
Heart of Software. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2003.

[3] Ö. Uludag, M. Hauder, M. Kleehaus, C. Schimpfle, and
F. Matthes, “Supporting large-scale agile development with
domain-driven design,” in Agile Processes in Software
Engineering and Extreme Programming - 19th International
Conference, XP 2018, ser. LNBIP, vol. 314. Springer,
2018, pp. 232–247. [Online]. Available: https://doi.org/10.
1007/978-3-319-91602-6_16

[4] E. Landre, H. Wesenberg, and J. Olmheim, “Agile enterprise
software development using domain-driven design and test
first,” in Companion to the 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA. ACM, 2007, pp. 983–
993.

[5] S. Kent, “Model driven engineering,” in Integrated Formal
Methods. Springer, 2002, pp. 286–298.

[6] D. C. Schmidt, “Guest editor’s introduction: Model-driven
engineering,” IEEE Computer, vol. 39, no. 2, pp. 25–31, 2006.
[Online]. Available: http://dx.doi.org/10.1109/MC.2006.58

[7] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven
Software Engineering in Practice, Second Edition, ser.
Synthesis Lectures on Software Engineering. Morgan
& Claypool Publishers, 2017. [Online]. Available: https:
//doi.org/10.2200/S00751ED2V01Y201701SWE004

[8] J. E. Hutchinson, M. Rouncefield, and J. Whittle, “Model-
driven engineering practices in industry,” in Proceedings of
the 33rd International Conference on Software Engineering,
ICSE. ACM, 2011, pp. 633–642. [Online]. Available:
https://doi.org/10.1145/1985793.1985882

[9] J. E. Hutchinson, J. Whittle, M. Rouncefield, and
S. Kristoffersen, “Empirical assessment of MDE in industry,”
in Proceedings of the 33rd International Conference on
Software Engineering, ICSE. ACM, 2011, pp. 471–480.
[Online]. Available: https://doi.org/10.1145/1985793.1985858

[10] J. Whittle, J. E. Hutchinson, M. Rouncefield, H. Burden, and
R. Heldal, “Industrial adoption of model-driven engineering:
Are the tools really the problem?” in Model-Driven
Engineering Languages and Systems - 16th International
Conference, MODELS, ser. LNCS, vol. 8107. Springer,
2013, pp. 1–17. [Online]. Available: https://doi.org/10.1007/
978-3-642-41533-3_1

[11] J. Whittle, J. E. Hutchinson, and M. Rouncefield, “The state
of practice in model-driven engineering,” IEEE Software,
vol. 31, no. 3, pp. 79–85, 2014. [Online]. Available:
https://doi.org/10.1109/MS.2013.65

[12] J. E. Hutchinson, J. Whittle, and M. Rouncefield, “Model-
driven engineering practices in industry: Social, organiza-
tional and managerial factors that lead to success or failure,”
Sci. Comput. Program., vol. 89, pp. 144–161, 2014. [Online].
Available: https://doi.org/10.1016/j.scico.2013.03.017

[13] D. Seybold, J. Domaschka, A. Rossini, C. B. Hauser,
F. Griesinger, and A. Tsitsipas, “Experiences of models@run-
time with EMF and CDO,” in Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Language
Engineering, Amsterdam, The Netherlands, October 31 -
November 1, 2016. ACM, 2016, pp. 46–56.

[14] N. Kahani, M. Bagherzadeh, J. Dingel, and J. R.
Cordy, “The problems with eclipse modeling tools: a
topic analysis of eclipse forums,” in Proceedings of
the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, Saint-Malo,
France, October 2-7, 2016, B. Baudry and B. Combemale,
Eds. ACM, 2016, pp. 227–237. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2976773

[15] J. Whittle, J. E. Hutchinson, M. Rouncefield, H. Burden, and
R. Heldal, “Industrial adoption of model-driven engineering:
Are the tools really the problem?” in Model-Driven Engineer-
ing Languages and Systems - 16th International Conference,
MODELS, ser. LNCS, vol. 8107. Springer, 2013, pp. 1–17.

[16] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks,
EMF: Eclipse Modeling Framework 2.0, 2nd ed. Addison-
Wesley Professional, 2009.

[17] D. S. Kolovos, N. D. Matragkas, I. Korkontzelos, S. Anani-
adou, and R. F. Paige, “Assessing the Use of Eclipse MDE
Technologies in Open-Source Software Projects,” in Proceed-
ings of the International Workshop on Open Source Software
for Model Driven Engineering co-located with ACM/IEEE
18th International Conference on Model Driven Engineering
Languages and Systems (MODELS 2015), Ottawa, Canada,
September 29, 2015., ser. CEUR Workshop Proceedings, vol.
1541. CEUR-WS.org, 2015, pp. 20–29.

[18] S. Rugaber and K. Stirewalt, “Model-driven reverse
engineering,” IEEE Software, vol. 21, no. 4, pp. 45–53, 2004.
[Online]. Available: https://doi.org/10.1109/MS.2004.23

[19] A. F. Iosif-Lazar, A. S. Al-Sibahi, A. S. Dimovski, J. E.
Savolainen, K. Sierszecki, and A. Wasowski, “Experiences
from designing and validating a software modernization
transformation (E),” in 30th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2015,
Lincoln, NE, USA, November 9-13, 2015, M. B. Cohen,
L. Grunske, and M. Whalen, Eds. IEEE Computer
Society, 2015, pp. 597–607. [Online]. Available: https:
//doi.org/10.1109/ASE.2015.84

[20] H. Klare, E. Burger, M. Kramer, M. Langhammer, T. Saglam,
and R. Reussner, “Ecoreification: Making Arbitrary Java Code
Accessible to Metamodel-Based Tools,” in 2017 ACM/IEEE
MODELS, Sep. 2017, pp. 221–228.

[21] A. Zolotas, H. H. Rodriguez, D. S. Kolovos, R. F. Paige, and
S. Hutchesson, “Bridging proprietary modelling and open-
source model management tools: The case of PTC integrity
modeller and epsilon,” in 20th ACM/IEEE International

https://doi.org/10.1007/978-3-319-91602-6_16
https://doi.org/10.1007/978-3-319-91602-6_16
http://dx.doi.org/10.1109/MC.2006.58
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.1145/1985793.1985882
https://doi.org/10.1145/1985793.1985858
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1016/j.scico.2013.03.017
http://dl.acm.org/citation.cfm?id=2976773
https://doi.org/10.1109/MS.2004.23
https://doi.org/10.1109/ASE.2015.84
https://doi.org/10.1109/ASE.2015.84


Conference on Model Driven Engineering Languages and
Systems, MODELS 2017, Austin, TX, USA, September 17-22,
2017. IEEE Computer Society, 2017, pp. 237–247. [Online].
Available: https://doi.org/10.1109/MODELS.2017.18

[22] H. Song, G. Huang, F. Chauvel, and Y. Sun, “Applying
MDE tools at runtime: Experiments upon runtime models,”
in Proceedings of the 5th Workshop on Models@run.time,
Oslo, Norway, October 5th, 2010, ser. CEUR Workshop
Proceedings, N. Bencomo, G. S. Blair, F. Fleurey, and
C. Jeanneret, Eds., vol. 641. CEUR-WS.org, 2010, pp. 25–
36. [Online]. Available: http://ceur-ws.org/Vol-641/paper_02.
pdf

[23] TPC, “Decision Support Benchmark (version 2),” 2019.
[Online]. Available: http://www.tpc.org/tpcds/

[24] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C.
Pierce, and A. Schmitt, “Combinators for Bi-directional Tree
Transformations: a Linguistic Approach to the View Update
Problem,” in POPL. ACM, 2005, pp. 233–246. [Online].
Available: http://doi.acm.org/10.1145/1232420.1232424

[25] H. Song, Y. Xiong, F. Chauvel, G. Huang, Z. Hu,
and H. Mei, “Generating synchronization engines between
running systems and their model-based views,” in Models in
Software Engineering, Workshops and Symposia at MODELS,
ser. LNCS, vol. 6002. Springer, 2009, pp. 140–154. [Online].
Available: https://doi.org/10.1007/978-3-642-12261-3_14

[26] H. Song, G. Huang, F. Chauvel, Y. Sun, and H. Mei,
“Sm@rt: representing run-time system data as mof-
compliant models,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume
2, ICSE. ACM, 2010, pp. 303–304. [Online]. Available:
https://doi.org/10.1145/1810295.1810362

[27] H. Song, G. Huang, F. Chauvel, Y. Xiong, Z. Hu, Y. Sun,
and H. Mei, “Supporting runtime software architecture:
A bidirectional-transformation-based approach,” Journal of
Systems and Software, vol. 84, no. 5, pp. 711–723, 2011.
[Online]. Available: https://doi.org/10.1016/j.jss.2010.12.009

[28] H. Song, G. Huang, F. Chauvel, W. Zhang, Y. Sun, W. Shao,
and H. Mei, “Instant and incremental QVT transformation for
runtime models,” in Model Driven Engineering Languages
and Systems, 14th International Conference, MODELS, ser.
LNCS, vol. 6981. Springer, 2011, pp. 273–288. [Online].
Available: https://doi.org/10.1007/978-3-642-24485-8_20

[29] H. Bruneliere, E. Burger, J. Cabot, and M. Wimmer, “A
feature-based survey of model view approaches,” Software
& Systems Modeling, Sep 2017. [Online]. Available:
https://doi.org/10.1007/s10270-017-0622-9

[30] E. J. Chikofsky and J. H. C. II, “Reverse engineering and
design recovery: A taxonomy,” IEEE Software, vol. 7, no. 1,
pp. 13–17, 1990. [Online]. Available: https://doi.org/10.1109/
52.43044

[31] S. R. Tilley, “Domain-retargetable reverse engineering. III.
layered modeling,” in Proceedings of the International
Conference on Software Maintenance, ICSM 1995, Opio
(Nice), France, October 17-20, 1995. IEEE Computer
Society, 1995, p. 52. [Online]. Available: https://doi.org/10.
1109/ICSM.1995.526527

[32] F. Gouveia de Freitas and J. C. Sampaio do Prado Leite,
“Reusing domains for the construction of reverse engineering
tools,” in Sixth Working Conference on Reverse Engineering
(Cat. No.PR00303), Oct 1999, pp. 24–34.

[33] H. A. Müller, M. A. Orgun, S. R. Tilley, and J. S.
Uhl, “A reverse-engineering approach to subsystem structure
identification,” Journal of Software Maintenance: Research
and Practice, vol. 5, no. 4, pp. 181–204, 1993.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1002/smr.4360050402

[34] D. R. Harris, A. S. Yeh, and H. B. Reubenstein, “Extracting
architectural features from source code,” Autom. Softw. Eng.,
vol. 3, no. 1/2, pp. 109–138, 1996. [Online]. Available:
https://doi.org/10.1007/BF00126961

[35] R. K. Keller, R. Schauer, S. Robitaille, and P. Pagé,
“Pattern-based reverse-engineering of design components,”
in Proceedings of the 21st International Conference on
Software Engineering, ser. ICSE ’99. New York, NY,
USA: ACM, 1999, pp. 226–235. [Online]. Available:
http://doi.acm.org/10.1145/302405.302622

[36] J. . Favre, F. Duclos, J. Estublier, R. Sanlaville, and J. .
Auffret, “Reverse engineering a large component-based soft-
ware product,” in Proceedings Fifth European Conference on
Software Maintenance and Reengineering, March 2001, pp.
95–104.

[37] L. Chouambe, B. Klatt, and K. Krogmann, “Reverse
engineering software-models of component-based systems,”
in 12th European Conference on Software Maintenance
and Reengineering, CSMR 2008, April 1-4, 2008, Athens,
Greece. IEEE Computer Society, 2008, pp. 93–102. [Online].
Available: https://doi.org/10.1109/CSMR.2008.4493304

[38] J. DeBaud, B. Moopen, and S. Rugaber, “Domain analysis
and reverse engineering,” in Proceedings of the International
Conference on Software Maintenance, ICSM 1994, Victoria,
BC, Canada, September 1994. IEEE Computer Society,
1994, pp. 326–335.

[39] J. DeBaud and S. Rugaber, “A software re-engineering
method using domain models,” in Proceedings of the Inter-
national Conference on Software Maintenance, ICSM 1995,
Opio (Nice), France, October 17-20, 1995. IEEE Computer
Society, 1995, pp. 204–213.

[40] H. Brunelière, J. Cabot, G. Dupé, and F. Madiot, “Modisco:
A model driven reverse engineering framework,” Information
& Software Technology, vol. 56, no. 8, pp. 1012–1032, 2014.
[Online]. Available: https://doi.org/10.1016/j.infsof.2014.04.
007

[41] A. García-Domínguez and D. S. Kolovos, “Models from code,
or code as models?” in Proceedings of the 16th International
Workshop on OCL and Textual Modelling co-located with
19th International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS 2016), Saint-Malo,
France, October 2, 2016., ser. CEUR Workshop Proceedings,
vol. 1756. CEUR-WS.org, 2016, pp. 137–148.

https://doi.org/10.1109/MODELS.2017.18
http://ceur-ws.org/Vol-641/paper_02.pdf
http://ceur-ws.org/Vol-641/paper_02.pdf
http://www.tpc.org/tpcds/
http://doi.acm.org/10.1145/1232420.1232424
https://doi.org/10.1007/978-3-642-12261-3_14
https://doi.org/10.1145/1810295.1810362
https://doi.org/10.1016/j.jss.2010.12.009
https://doi.org/10.1007/978-3-642-24485-8_20
https://doi.org/10.1007/s10270-017-0622-9
https://doi.org/10.1109/52.43044
https://doi.org/10.1109/52.43044
https://doi.org/10.1109/ICSM.1995.526527
https://doi.org/10.1109/ICSM.1995.526527
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.4360050402
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.4360050402
https://doi.org/10.1007/BF00126961
http://doi.acm.org/10.1145/302405.302622
https://doi.org/10.1109/CSMR.2008.4493304
https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.1016/j.infsof.2014.04.007

