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Abstract. ATL is a well-established model transformation language
both in industry and in academia, where it is used as a reference lan-
guage for studying different types of model transformations and their
properties. In this paper, we discuss current limitations of ATL’s in-
place semantics that hamper its application for modelling and verifying
systems and propose a new in-place semantics for ATL that enables it
as a specification language for simulating and verifying EMF-based sys-
tems. Our approach is based on FMA-ATL, an executable specification
of a large excerpt of ATL in Maude, which has been augmented with
the new in-place semantics so that Maude’s verification tools can then
be used both to perform bounded model checking of invariants and to
model check LTL formulas in the resulting system models, where appro-
priate. Furthermore, FMA-ATL uses ATL as front-end language and it
can be reused as-is for verification, including its tool support.
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1 Introduction

ATL is a model-to-model transformation language that seeks pragmatism by
ensuring that executed model transformations always produce the same result.
This offloads the responsibility of ensuring those conditions from software en-
gineers when designing a model transformation, which helps to focus on the
domain problem, namely the transformation definition. Such pragmatism is im-
plemented by using a read-only source model in which model elements are trans-
formed only once, building an output model from scratch. There are situations
where such bulk semantics is too expensive, both from a productivity point of
view and from a computational point of view. For example, when endogenous
model transformations involve sparse model updates in possibly large models,
explicit rules need to be introduced in order to copy the model elements that
are not the target of model updates and that are to be preserved.

The ATL2010 compiler addresses these concerns by emulating in-place model
transformations [10] for ATL transformations in refining mode using a two-step
process, which relies on an abstract language for defining updates. In a first step,
rules are applied and a diff model is computed representing in-place changes as
a patch of model differences. In a second step, the changes obtained from all the
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rules are reordered in order to apply creations first, modifications afterwards and
deletions at the end, ensuring the standard properties of ATL transformations.
The resulting sequence of model changes is applied as a patch to the model.

One could consider the use of in-place ATL transformations for specifying and
simulating software systems by modelling system states with EMF (Eclipse Mod-
eling Framework) models and by capturing the dynamic aspects of the system
with an ATL modules. System simulation could be achieved by successive appli-
cations of the transformation to pre-states in order to produce post-states, with
the amalgamated updates of several rule applications. However, ATL in-place se-
mantics presents a number of drawbacks that hampers such an approach. By the
very nature of ATL, transformations are deterministic when they are evaluated
by ensuring that each source object is matched by an ATL rule only once. This
means that only a subset of deterministic systems can be modelled for verifica-
tion purposes. Non-deterministic systems and, hence, concurrent systems cannot
be modelled with ATL transformations. In particular, there are two reasons that
hinder soundness and completeness of the verification of systems modelled with
ATL. First, when a transformation is applied to a source model, ATL’s in-place
strategy affects side-effects but not the matches of rules, which are computed up
front. For example, the application of a rule that disables a pre-computed match
is disregarded, yielding an incorrect result. Second, the application of rules that
enable new matches are also disregarded for the same reason. This means that
in-place ATL transformations may not capture all the intended behaviour of a
system. That is, an in-place model transformation model, understood as the class
of model transformations for all models conforming to the source metamodel,
cannot be used as a system model, corresponding to execution paths between
system states. This is important from a verification point of view, as the absence
of errors in that case is no guarantee of the correctness of the actual system. That
is, the specification is an under-approximation of the intended behaviour. These
drawbacks are illustrated with the running example of section 2 in section 5.

In this work, the structural operational semantics (SOS) of FMA-ATL [2],
which formalizes a large excerpt of representable ATL model transformations,
has been augmented with a new in-place semantics that overcomes those prob-
lems. This semantics specification is implemented faithfully in Maude [3] yield-
ing a scheduler for applying matched rules and an interpreter for their side
effects. FMA-ATL uses the EMF as front-end for defining metamodels and
models, permitting the reuse of EMF-based systems and domain-specific mod-
elling languages (DSMLs). Furthermore, our approach reuses Maude’s verifi-
cation tools for analysing correctness properties in the resulting system mod-
els. Furthermore, we use the official ATL language as the front-end language
for FMA-ATL, providing a new engine for ATL equipped with formal verifi-
cation techniques. This last contribution facilitates the validation and verifica-
tion of ATL system specifications by reusing the tool ecosystem that is already
available for ATL, facilitating the collaboration between software engineers spe-
cialized in (model-driven) software development and software engineers special-
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ized in validation and verification. The tool and examples used are available at
https://fma-atl.github.io/.

In the rest of the paper: in section 2, ATL is presented as a specification
language for EMF-based systems, using the Concurrent Append Problem from [9]
as a running example; in section 3, ATL is used as property specification language
and the different verification techniques supported in FMA-ATL are illustrated;
in section 4, the integration of ATL is discussed; in section 5, the shortcomings
of ATL2010’s in-place semantics are illustrated with the running example and
FMA-ATL features are compared against those of representative tools used for
simulating and verifying EMF-based systems; and final concluding remarks are
given in section 6.

2 ATL as System Specification Language

Combining refining mode and in-place transformations without control flow con-
straints removes the guarantees that make ATL transformations confluent and
terminating. Fortunately, these are also the conditions that enable ATL as a
specification language for modelling concurrent processes, which we consider in
the rest of this section. We first introduce an example that cannot be modelled
using the in-place semantics of ATL, explaining the syntax used to model EMF-
based systems, and then show how this semantics is captured by augmenting the
FMA-ATL semantics with a new scheduler rule.

2.1 The Concurrent Append Problem

Our running example is the concurrent append problem of the Java program of
Fig. 1, adapted from [9], which implements the append method on cells, which
may be arranged forming a list, of Fig. 1. Given a String value x as parameter,
the program appends a new tail cell to the list if x is not contained in any of the
existing cells. An example correctness criterion is that the list of cells must not
contain the same value more than once. However, different threads may access
cells concurrently by calling the append method, which might result in undesired
race conditions without certain assumptions on atomicity.

In this paper, the example is modelled using the ATL system specification of
Fig. 2, where the state model, represented as an EMF model, and an initial state
are given in Fig. 1. The state model expresses that each cell contains a value
val and may have a successor via the composition next. The append method
call is represented with: an Append object with the argument x to be inserted; an
active flag (corresponding to the program counter) indicating that the method
is being executed; and a return flag indicating that the execution of the method
is over. Recursion is modelled using the containment reference callee.

States are represented as nested object diagrams, where objects may be
nested through containment references. Each containment reference is depicted
as a labelled box, whose contents are the immediate children. The state of Fig. 1
shows two concurrent calls to append("b") on the singleton list ["a"].

https://fma-atl.github.io/
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class Cell {
Cell next;
int val;
void append(int x) {

if (x == this.val)
return;

if (this.next == null) {
this.next = new Cell();
this.next.val = x;

} else
this.next.append(x);

}
}

Fig. 1. Java program (left), model of states (middle) and initial state (right).

In the following, we explain how to use ATL to model the Append method
using a new in-place semantics, an defer the discussion of deviations w.r.t the
current in-place semantics in subsection 5.1.

In ATL, a (matched) specification rule has: a name; a source pattern, de-
noted with the keyword from, consisting of an object variable (or element) to
be matched for the rule to be enabled and a filter condition expressed in OCL
where the object variable can be used; a potentially empty list of local variable
initializations, enclosed by the using block; and a target pattern, denoted by
the keyword to, containing a list of object variables (or elements) that refer to
objects that are created, when a new variable is used, or to objects that are up-
dated, when the name of a declared variable (either the source pattern variable
or a local variable) is suffixed with ref. Each target object variable encloses a
list of bindings, each of which corresponds to a feature (attribute or reference)
initialization, when the object is created, or to a feature update, when the ref

naming convention is used in the object variable name. Updates for attributes
reset their value. Updates for references (including containments) either reset
their value, if the upper bound is one, or append a new reference if the upper
bound is not met. Updates may also be destructive for references if the suffix
unset is appended to the name of the reference. In that case, the correspond-

ing reference is deleted if the lower bound is not met. A containment reference
can only be deleted when the contained object is isolated, there are no incident
references to it or to any of its contents. The deletion of a containment reference
implements cascade delete semantics, that is the contained object and its con-
tents vanish outright. ATL also provides the statement drop that can be used
in the target pattern of a specification rule, denoting the deletion of the object
matched by the source pattern, with the same delete cascade semantics.

An ATL specification can also contain lazy specification rules, which are not
matched by the scheduler and have to be called from matched rules explicitly. In
FMA-ATL [2], unique lazy rules are used to reduce the state space of a system
specification from an initial state by amalgamating the side effects of all the
lazy rule applications in one big transition step. Moreover, an ATL specification
can contain helpers, which are functional operations that can be used to query



A Formal Framework for Prototyping Executable Semantics in ATL 5

the source model or to perform computations. ATL helpers will be discussed in
section 3.

The ATL specification modelling the dynamic behaviour of the append method,
adapted from [9], is shown in Fig 2, and consists of the following rules:

Append a new cell. Rule Append is responsible for appending a new cell to
the list if the control reaches the last cell (there is an active Append object
pointing to the last cell) and the value stored at this last cell is not equal to
the method argument.

Go to next cell. Rule Next checks whether the method argument is not equal
to the value stored at the current (this) cell and makes a recursive call then
for checking the next cell by generating a new Append object and declaring
it as the active call, deactivating the current call.

Value found in list. Rule Found checks if the method argument matches the
value stored at the current (this) cell and, if so, indicates that the compu-
tation is over by disabling active and by enabling return.

Return result. Finally, rule Return simply removes an append invocation ob-
ject (from the stack of recursive calls) if it has already calculated the result.

rule Next {
from a1 : append!Append (

a1.active=true and a1.x <> a1.this.val
and a1.callee.oclIsUndefined ()

) using {
c : append!Cell = a1.this.next;

} to a1__ref : append!Append (
active <- false ,
x <- ’’,
callee <- a2

),
a2 : append!Append (

active <- true ,
x <- a1.x,
this <- c

)
}

rule Return {
from a1 : append!Append (

a1.return = true and
not(a1.caller.oclIsUndefined ())
and a1.callee.oclIsUndefined ()

) using {
caller : append!Append = a1.caller;

} to caller__ref : append!Append (
return <- true ,
callee__unset <- a1

)
}

rule Found {
from a1 : append!Append (

a1.active and a1.x = a1.this.val
) to a1__ref : append!Append (

x <- ’’,
active <- false ,
return <- true

)
}

rule Append {
from a1 : append!Append (

a1.active and a1.this.val <> a1.x
and a1.this.next.oclIsUndefined ()

) using {
c1 : append!Cell = a1.this;

} to a1__ref : append!Append (
x <- ’’,
active <- false ,
return <- true

),
c2 : append!Cell (

val <- a1.x
),
c1__ref : append!Cell (

next <- c2
)

}

Fig. 2. An ATL version of the method Cell::append(x: String).

The FMA-ATL engine consists of a scheduler rule that is applied to engine
configurations, i.e. states of the FMA-ATL engine. Given an ATL system spec-
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ification, the FMA-ATL engine parses matched/lazy rules and helpers, produc-
ing the initial engine configuration. This includes the computation of attribute
helpers, caching their result. It then computes all enabling matches for matched
rules, by considering their source pattern element and its filter condition. Then
the scheduler starts the system simulation by selecting one enabling match and
the corresponding ATL matched rule. The execution of a matched rule involves
the interpretation of both a FMA statement representing the side effects in the
system state. After these side effects are applied, continues the execution with
the next enabling match until no more rules can be applied. In subsequent sec-
tions, we describe the engine configurations and how the scheduler rule is used
to simulate ATL system specifications from an initial system state.

2.2 FMA-ATL Configurations and Engine Initialization

The main configuration types of the FMA-ATL engine are depicted in Fig. 3.
The class AtlMatchingConfig represents the configuration of the engine for
applying matched rules: a ruleStore and a helperStore with the set of ATL
rules and the set of helpers, respectively, that are defined in the transformation;
a queryDomain pointing to the domain that contains the source model and a
set of domains that correspond to the different target models that are created
by the transformation. A domain contains a name that identifies the domain,
a model referring to a collection of objects, a loc map with locations for the
objects in the model, and a factory new for obtaining fresh identifiers when a
new object is created.

To simulate a system specification, the FMA-ATL engine first initializes an
AtlMatchingConfig configuration, loading each specification rule into a rule
store and helpers into a helper store. A FMA-ATL rule is initialized, by gener-
ating a FMA statement that models the side-effects on the state that are repre-
sented in the bindings of the target pattern of a specification rule, as described
in [2].

A FMA statement can be regarded as a sequence of typical updates that
can be performed in an EMF model instance. This initialization is performed by
extracting a graph of side effects from the list of bindings of each target pattern
element. Nodes are target pattern object variables and expressions representing
a query (used in the initialization of the binding). Named edges are defined from
object variables to expressions or to other object variables representing each
binding. Once the graph is generated, FMA-ATL walks through the graph twice
starting from the root object and following containment edges: first, it obtains a
FMA statement that creates a tree of objects that initializes their containment
references; second, for each object created in the first traversal, it initializes their
attributes and non-containment references.

For the in-place semantics, the type graph of the graph that is used to rep-
resent the side effects of an ATL specification rule has been augmented with
update and drop nodes. On the one hand, update nodes are obtained when the
name of an object variable in the target pattern of a rule contains the suffix
ref and it coincides with the object variable used in a source object variable
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traceGlobal = TG1
traceLocal = TL1
ruleStore = RS
helperStore = HS
matchPool = MP1
domains = DS1
rtClasses = RTC
mode = in-place

3 : AtlMatchingConfig

traceGlobal = TG2
traceLocal = TL2
ruleStore = RS
helperStore = HS
matchPool = MP2
domains = DS2
rtClasses = RTC

3 : AtlMatchingConfig

traceGlobal = TG1
traceLocal = TL1
ruleStore = RS
helperStore = HS
domains = DS1
rtClasses = RTC

: AtlConfig

rule = RN
match = V |-> O

: Match
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model = OS1
loc = LOC1
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traceGlobal = TG2
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domains = DS2

: AtlFinalConfig

E-Schedule-InPlace

+ATL

)

when IS=evalOcl( CT . allInstances() -> select( V | FC ) -> asSequence(), OS1, LOC1) /\ O  in IS /\ 
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ruleStore
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loc = LOC1
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loc = LOC1

2 : Domain

domains

name = RN
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varType = C
filter = FC

2 : AtlRule

ruleStore

traceGlobal : Map<Tuple(source:Oid,var:ValExpr),Tuple(rule:ValExpr,target:Oid)>
traceLocal : Map<Tuple(source:Oid,var:ValExpr),Tuple(rule:ValExpr,target:Oid)>
rtClasses: String [0..*] {set}
mode : AtlMode
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AtlBaseConfig

stmt : FmaStmt

AtlMatchingConfigAtlMatchingFinal
Config

name : ValueExpr
fmaStmt : FmaStmt
traceStmt : TraceStmt

DomainAction
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new : Map<QualifiedCid,Oid>
model : ObjectSet
loc : Map<Oid,Location>

Domain

* queryDomain

*

domains

domain1

*
actions

Env
1
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AtlHelper

helperStore *value : ValExpr

AttributeHelper

ContextHelper
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refining
in-place

«enumeration»
AtlMode

Fig. 3. FMA-ATL configuration model (top) and in-place scheduler rule (bottom).

(either the source pattern object variable or a local variable of the using block).
On the other hand, drop nodes are obtained when a drop statement is parsed.
When a side-effect graph is translated into a FMA procedure, update nodes
correspond to free variables that are to be bound in the environment. That is,
FMA-ATL does not create a new object for update nodes in the first traversal
of the graph. Moreover, drop nodes correspond to object destruction by deleting
the corresponding containment reference when the object is not a root one.

Moreover, binding compilation to FMA statements has also been augmented
by allowing deletion of references. This is used in an ATL specification by ap-
pending the suffix unset to a reference name in a binding of a target pattern
element. Such bindings are compiled to unset model actions in FMA when the
graph of side-effects is traversed. In FMA, an unset action deletes a reference
if the lower bound of the reference is not met. The deletion of a containment
can only be applied when the object to be deleted or any of its contents are not
referenced from an external object. Such a deletion entails the deletion of the
objects, including its contents.
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2.3 Rule Scheduling

In-place semantics for ATL specifications is defined by using a new scheduler
rule E-Schedule-InPlace, shown in Fig. 3, where the main differences w.r.t. the
normal (out-place) scheduler rule of [2] are highlighted. This rule is introduced in
order to compute matches during the execution of the transformation, avoiding
the up-front computation of the matches.

A match is computed as in the computation of matches up-front when ATL is
executed in normal or refining mode. Given the contextual type C of the variable
V used in the in pattern element of the rule and the filter condition FC, the list
of matches for a rule is computed by evaluating the expression

CT.allInstances()->select( V | FC )->asSequence()

over the model OS1 with the location map LOC1 using the operation evalOcl.
Thereby, the scheduler considers causal dependencies between rules based on the
current state. In the implementation, rules are ordered lexicographically by name
and the list of matches is ordered by each object internal id, a natural number.
Therefore, each rule is applied for each list of matched objects orderly in the
expression O in IS given that the list IS is computed for each rule application.
This is, however, a potential source of starvation that needs to be taken into
account when specifying a system: if a rule is always enabled for a list of objects,
it will always be applied to the first object, treating others unfairly.

Once a match is found for a given specification rule, the match is defined
by using the variable V of the in pattern element, and the side-effects of the
specification rule, represented as a FMA statement, are interpreted using the
big-step evaluation relation ⇓ATL presented in [2]. We can regard this evaluation
relation as a black-box component where the precondition involves that a match
for a rule must be selected and that the system state must be in the query
domain (used to evaluate OCL queries) and in the domain (used to apply rule
side effects). The postcondition of the evaluation relation guarantees that the
system state in the resulting domain DS2 is well-formed after applying the rule.

The new scheduler rule of Fig. 3 allows FMA-ATL to simulate system spec-
ifications. More specifically, this rule has been faithfully been implemented in
Maude as a rewrite rule and each application of the in-place scheduler rule
coincides with one system transition, thus executing the FMA-ATL engine from
an initial configuration amounts to simulating the system specification from an
initial system state. Furthermore, the in-place scheduler rule allows to reuse
Maude’s toolkit to traverse the system state space for verification purposes, as
explained in the following section.

The behaviour of the system specification of our running example can thus be
simulated by running the FMA-ATL engine with a system specification from an
initial system state. Taking the system state of Fig. 1 as initial, a valid resulting
execution path is graphically depicted in Fig 4, denoting a rule application with
an arrow, whose label contains the name of the arrow between system states,
but for the initial state, and the identifier of the matched object (in between
parenthesis).
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Append(2) Next(1) Found(5) Return(5)

Fig. 4. Simulation from the initial system state of Fig. 1.

3 ATL as Property Specification Language

FMA-ATL is implemented in Maude so that we can reuse its LTL model checker
for verifying temporal properties when the system specification models a finite
state space [6], and its bounded model checker for invariants when the state
space is infinite. The model checking problem consists in deciding whether a given
correctness property holds in a specified system by systematically traversing all
enabled transitions in all system states. That is, in FMA-ATL, given a system
state, represented as an Ecore model instance, all possible enabled specification
rules are applied and this procedure is recursively repeated on the successor
states until no more matches are found.

Relevant classes of such correctness properties are safety and reachability
properties. A safety property defines a desired property that should always hold
on every execution path or (equivalently) an undesired situation which should
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never hold on any execution path. A reachability property describes, on the
contrary, a desired situation which should be reached along at least one execu-
tion path. These two types of properties are interrelated in that a proof of the
violation of a safety property is a witness of the reachability property defined
as the negation of the safety property. Hence, if a safety property holds (or a
reachability property is violated), the entire state space needs to be examined.

Such correctness properties are frequently formalized as LTL formulae built
over a set of state properties, which either hold or not in a given system state. In
FMA-ATL, the property specification is given in a separate ATL module defining
the satisfaction of each state proposition using an ATL attribute of the form
helper def : P : Boolean = B ; where P is the name of the state property
and B is the boolean OCL expression that defines its satisfaction. The property
specification module must share the same header with the system specification
module. For example, in the listing below, the Shared property denotes when
two distinct cells of the list contain the same value, a situation that is prohibited.
Moreover, the Isolated property denotes a desired behaviour, a cell in the list
and an append call will never share the same value in the same system state.
helper def: Shared : Boolean =
append!Cell.allInstances ()->exists(c1 |

append!Cell.allInstances ()->exists(c2 | c1 <>c2 and c1.val=c2.val )
);

helper def: Isolated : Boolean =
append!Cell.allInstances ()->forAll(c |

append!Append.allInstances ()->forAll(a | a.x<>c.val )
);

To use Maude’s model checker, the following components need to be character-
ized: the type of states, by defining a subsort of the sort State; the set of state
predicates to be used as invariants or as atomic propositions in LTL formulas, by
declaring them as subsort of the sort Prop; and finally the satisfaction of such
state predicates, by providing equations for the operation

op |= : State Prop -> Bool

In FMA-ATL, the set of states is defined by the class AtlMatchingConfig

of our interpreter in Fig. 3. In that way, system states included in domains
are wrapped by additional constructs that are used to specify the operational
semantics. FMA-ATL declares a state property for each of the helper attributes
defined in an ATL property specification module and defines its satisfaction
using equations of the form1

AtlMatchingConfig name : DN
model : OS
loc : LOC

Domain
domains

✏ P = evalOcl(B, OS, LOC)

1 Internally FMA-ATL works with a term representation of engine configurations and
system states, which is depicted graphically for the sake of presentation.
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Then we can verify that the system satisfies the property that all cells in a given
list will always contain unique values after a set of append calls, which may or
may not contain the same values, with the following command:

red modelCheck( initialConfig , []~Shared ) .

where ~ denotes not, and [] is the LTL operator always (�) meaning that the
property must hold in all future states, and initialConfig is the term resulting
from the engine initialization phase as explained in section 2.2.

Given an ATL system specification and property specification modules, an
initial system state and the name P of an state property with body expression
B, in the property specification module, FMA-ATL can verify invariants, such
as Isolated, by traversing the state space using a breadth-first strategy with
Maude’s search command2

AtlMatchingConfig name : DN
model : OS
loc : LOC

Domain
domains

such that evalOcl(not B, OS, LOC) = true .

search initialConfig =>*

That is, the command searches for a configuration containing a system state
where the expression B is violated. If such configuration is not found, the refuta-
tion process ends unsuccessfully and the invariant is satisfied because the state
space is finite, in the example. For systems where the state space is infinite, an
upper bound can be used for the analysis trading completeness for decidability.

4 Integration with ATL

FMA-ATL is available3 as an EMF-based standalone library that can be used to
execute a substantial excerpt of ATL model transformations. It enables formal
verification of systems where the specification language, both for systems and
for state properties, is ATL itself.

The execution of out-place model transformations, which was presented in [2],
has been augmented with new functionality developed for this work: (1) inte-
gration with the ATL language; (2) simulation of model-based systems using
ATL as specification language (with in-place matched rules); (3) bounded model
checking of invariants, which are specified in ATL, when the state space of the
specified system is infinite; and (4) software verification using LTL model check-
ing, where state properties are specified in ATL, when the state space of the
specified system is finite.

2 Using =>* the search will be performed along zero or many simulation steps. However,
other strategies that can be used are =>! for run to completion semantics, =>1 for
one step, =>+ for at least one step.

3 https://fma-atl.github.io

https://fma-atl.github.io
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The front-end language for defining metamodels and system state models
is EMF (Ecore) and the language for specifying model transformations, system
specifications and property specifications is ATL. To implement the integration
with ATL, FMA-ATL reuses parts of AnATLyzer [4] to infer types from ATL
expressions and extends its ATL serializer to serialize ATL transformations to
FMA-ATL. In FMA-ATL, expressions that are specific to ATL and extraneous to
OCL, like resolveTemp, are evaluated independently of OCL expressions so that
a Maude implementation of OCL, mOdCL [8], can be reused. This means that ATL
expressions have to be transformed in order to extract ATL specific expressions
(resolveTemp expressions, invocation of helpers and attributes, invocation of
lazy rules) from OCL expressions, which requires transforming local variables
(iterator variables) into global variables (FMA variables) while using unique
names and remembering the scope where they are used.

5 Related Work

In this section, we analyse our contribution w.r.t. related work by looking at
the differences with ATL in-place semantics in detail and, then, by providing a
broader view of the features of FMA-ATL.

5.1 Differences with ATL In-Place Semantics

From a system specification point of view, when using ATL2010 in refining mode,
transformation rules can match several objects by means of the using block,
and several objects can be added to the model but only the object matched
by the source pattern element can be updated. That is, ATL does not support
the update those objects matched in the using block. However, the matched
object (and its contents) can be deleted using the statement drop (in the output
pattern of a rule). Moreover, the naming conventions ref and unset and
their semantics for applying updates to source object variables are ignored by
ATL. These naming conventions are used by FMA-ATL to unset references,
which cannot be done in ATL.

Regarding system verification, ATL in-place semantics is not sufficient for
system specification, as explained in the introduction. To illustrate the unsound-
ness and the incompleteness of an ATL specification using ATL2010 in-place se-
mantics (w.r.t. the intended behaviour of the system), we consider the scenario
of the running example where the same element ’b’ is inserted twice in the sin-
gleton list of Fig 1. We have modified the rule Append as a workaround for the
problems stated above, that is to help ATL apply updates to the matched object
only. The main change in the state model of Fig. 1 involves the declaration of a
reference previous as opposite to next. The new rule Append, shown in Fig. 5,
captures the intended behaviour of the original rule: a new cell is appended to
the list if it has not been found (the appender is marking the last element of the
list, which has a different value). To apply the transformation, ATL computes
the matches, enabling the rule for both objects Append, with ids 1 and 2. When
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rule Append {
from a1 : append!Append (

a1.active and
a1.this.next.oclIsUndefined ()
and a1.this.value <> a1.x

) to a1__ref : append!Append (
active <- false ,
return <- true ,
x <- ’’

),
c2 : append!Cell (

value <- a1.x,
previous <- a1.this ,
list <- a1.this.list

)
}

Fig. 5. Modified rule Append (left) and resulting state (right) from state of Fig. 1.

the transformation is executed, the first application of the rule Append inserts
the new cell with id 4. This should disable the match of the rule for object 1.
However, as the engine is blindly applying the pre-computed matches, a new cell
with id 5 is inserted, leaving cell 4 dangling because of the upper bound of the
reference next, as shown in the resulting state in Fig. 5. Hence, violating the
state property Shared.

To consider a witness of incompleteness of an ATL2010 specification using in-
place semantics w.r.t. the system behaviour, we look at the rule Return, which is
enabled for object 1 after the first application of Append. However, the execution
path of Fig. 4, where rule Return is applied before the application of Append to
object 1, is obliterated for the same reason and this behaviour is not captured
by the ATL2010 in-place semantics of the system specification.

5.2 Comparison

Table 1 shows a comparison of features of ATL2010 in-place semantics with
two ATL-based specification languages, namely SimpleGT [12] and FMA-ATL.
To give a broader view of the contributions, we have also included Henshin[1],
Groove [7] and e-Motions [11,5], which are also based on EMF (either directly or
indirectly) and provide rule-based languages both for modelling and for verifying
EMF-based systems.

We classify our comparison under two main dimensions: specification and
verification. Question marks are inserted wherever definite information could
not be found to sustain the claim. From a system specification point of view,
we consider the type concrete syntax used for specifying systems, that is using
the ATL language, abstract syntax (object diagrams or similar), domain-specific
modelling language (DSML) or other; the language for specifying queries; their
support for negative-application conditions (NACs); whether updates can be ap-
plied to several objects matched in the query part of the rule; control mechanisms
to handle the application of rules, for example application of rules as long as pos-
sible (alap), only one match per rule unique, arbitrary selection of the rule to be
applied, rule priorities, a dedicated control language, or other scheduling policies;
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Features FMA-ATL ATL2010 SimpleGT Groove Henshin e-Motions
in-place in-place

System specification
Concrete syntax textual textual textual graphical graphical graphical

(ATL) (ATL) (other) (abstract) (abstract) (DSML)
Query language mOdCL ATL-OCL SimpleOCL graph graph graph patterns,

patterns patterns mOdCL
NACs OCL (filter) OCL (filter) 3 3 3 3
Updates 3 7 3 3 3 3
Control alap unique alap? arbitrary alap round-robin

unique priorities priorities
control lang

Amalgamation 3 7 7 3 3 7
Rule inheritance 7 3 3 7 7 7
Non-determinism 3 7 3 3 3 3
State-space BFS 7 7 DFS, BFS BFS? BFS
generation linear

Property specification and verification
Language ATL helpers 7 7 graphs OCL Maude
Model checking bound. inv, 7 7 bound. inv, bound.? inv, bound. inv,

LTL LTL, CTL qualitative LTL
probabilistic statistical

Table 1. Comparison of system specification languages for EMF-based systems.

whether rule application amalgamation is supported by using mechanisms that
group several transitions in one single transition; strategies available to explore
the state space, usually depth-first search (DFS), breadth-first search (BFS) or
linear; and whether the specification language can model non-determinism.

Regarding verification, we focus on the language used to specify state proper-
ties and on model checking techniques supported. Additionally: Groove provides
mechanisms for symmetry reduction; Henshin4 provides support for qualitative
model checking with CADP and mCRL2, and stochastic and probabilistic model
checking with PRISM; and e-Motions system specifications can model both real-
time systems and stochastic systems, the latter class of models can be analysed
with statistical model checking using PVeStA.

FMA-ATL, Groove and Henshin support amalgamation mechanisms to re-
duce the state space. In particular, FMA-ATL achieves this by using lazy rules [2].
However, these tools, together with e-Motions, do no provide support for rule
inheritance. By using ATL as front-end language in FMA-ATL, the ecosystem
of tools available both for developing ATL transformations (e.g. IDE support,
parser) and for analysing them can be reused for facilitating the correct defini-
tion of ATL transformations/specifications. Conversely, our tool contributes to
that ecosystem as well.

6 Conclusions

Verification of model-based software systems have normally been studied with
in-place graph transformation and, up to now, ATL has not been used for this
purpose. In this work, we have discussed several drawbacks that hamper the

4 http://wiki.eclipse.org/Henshin/State_Space_Tools

http://wiki.eclipse.org/Henshin/State_Space_Tools
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use of the current ATL in-place semantics for modelling and verifying EMF-
based systems. In particular, we illustrated why such system specifications are
potentially incomplete and unsound w.r.t. the intended behaviour of a system
for verification purposes by using a representative example form the literature.

We presented a new in-place semantics for ATL by augmenting FMA-ATL’s
semantics with a new scheduler rule, by enabling ATL as its front-end language
and by linking Maude’s verification techniques to ATL. FMA-ATL thus enables
the use of ATL for specifying, simulating and verifying both deterministic and
non-deterministic systems.

Acknowledgements. The author would like to thank Frédéric Jouault and
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mous reviewers for their observations, which helped improve this work greatly.
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