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Abstract

In model-driven engineering (MDE), models abstract the rel-
evant features of software artefacts and model management
operations, including model transformations, act on them
automating large tasks of the development process. Flexible
reuse of such operations is an important factor to improve
productivity when developing and maintaining MDE solu-
tions. In this work, we revisit the traditional notion of object
subtyping based on subsumption, discarded by other ap-
proaches to model subtyping. We refine a type system for
object-oriented programming, with multiple inheritance, to
support model types in order to analyse its advantages and
limitations with respect to reuse in MDE. Specifically, we ex-
tend type expressions with referential constraints and with
OCL constraints. Our approach has been validatedwith a tool
that extracts model types from (EMF) metamodels, paired
with their OCL constraints, automatically and that exploits
the extended subtyping relation to reuse model management
operations. We show that structural model subtyping is ex-
pressive enough to support variants of model subtyping,
including multiple, partial and dynamic model subtyping.
The tool has received the ACM badge "Artifacts Evaluated −
Functional".
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1 Introduction

Our aim in this work is to revisit the research question of
whether type subsumption − i.e. the relation capturing that
any inhabitant of a given subtype is also an inhabitant of a
given supertype − is a valid mechanism for facilitating reuse
of model management operations in MDE in order to analyse
its advantages and limitations. We approach this topic by
exposing a general problem involving reuse, which we then
solve by using structural model subtyping.

In a typed setting, model management operations are ap-
plied to models that conform to metamodels, which define
the abstract syntax of a modeling language. Additional well-
formedness constraints can be added to the language, usually
by encoding them in an OCL dialect. The notion of a pair
(M,Ω) formed by a metamodelM and its (OCL) constraints
Ω is captured as a metamodel specification [4]. A very gen-
eral form of reuse emerges when we want to learn whether
we can extrapolate model management operations from one
metamodel specification to another one. This involves learn-
ing whether two metamodel specifications, whose metamod-
els and constraints need not be related a priori, are com-
patible capturing the notion of subtype polymorphism in
model management operations. This is a frequent problem
in the evolution of modeling languages, where updates to
their abstract syntax and constraints may need to preserve
forward/backward compatibility of operations.

Depending on how typing is considered [24], we can dis-
tinguish semantics where typing (the instanceOf relation)
is ontological, explicitly definable in the metamodeling lan-
guage, or linguistic, implicitly defined by the metamodeling
language. In addition, we consider that the semantics of
object subtyping corresponds to (static) subclassing − gen-
eralization − in the first appproach, and to subsumption,
in the second approach. Hence, we distinguish approaches
where models are represented as graphs, where typing is on-
tological; or as terms, where typing is linguistic. On the
one hand, graph transformation theory and well-known
(meta)modeling environments, such as the Eclipse Model-
ing Framework (EMF) and the USE environment [18, 23],
rely on the first representation, exploiting a set-theoretic
representation to implement tools, e.g. for checking model
typing and for analysing (OCL) constraints. On the other
hand, type-theoretic approaches, such as [10, 26], rely on
the second representation for exploiting inductive reasoning
and higher-order functions.
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To solve the aforementioned problem, the following re-
sults have been developed in this work:
(1) Extension of OO types, with multiple inheritance seman-
tics [8], to model types with referential constraints, reusing
a type-theoretic framework, with linguistic typing and a con-
venient semantics for subtyping. Our model types formalize
the common features of EMF metamodels, including classes
with attributes, cross-references and containments, multiple
inheritance, data types and enumeration types, multiplic-
ity, ordering, uniqueness and bidirectionality constraints for
cross-references and containments.
(2) Attachment of the USE semantics of OCL constraints [27],
with ontological typing, to extended OO types in order to
reuse tool support for mechanizing the satisfaction of OCL
constraints in our model types.
(3) Definition of a subtyping relation between metamodel
specifications that couples extended OO subtyping, between
the types in both metamodels, with the compatibility of their
OCL constraints. Such a subtyping relation can be regarded
as a structural refinement relation between metamodel spec-
ifications. The computation of the subtyping relation for two
given metamodel specifications relies on the construction
of an extension metamodel that reflects (linguistic) model
subtyping using (ontological) subtyping, enabling reasoning
about the compability of OCL constraints from both meta-
model specifications. The extension metamodel also serves
as the basis for reusing model management operations as-is,
i.e. without introducing changes to the operation behaviour.
(4)A semi-decidable procedure that solves the proposed prob-
lem by using structural model subtyping and its implemen-
tation in a tool, facilitating flexibility in MDE by supporting
dynamic, partial and multiple typing. The tool implement-
ing this procedure has received the ACM badge łArtifacts
Evaluated - Functionalž and is available, with case studies, at
https://mde-subtyping.github.io/web/.
In the following subsections, we introduce an example

and discuss approaches for model typing, focussing on ac-
cepted notions of model subtyping for EMF metamodels and
for graph transformation theory. In section 4, a syntactic
representation for model types and structural model sub-
typing are introduced. In section 5, we map a semantics of
metamodels specifications to our model types and extend the
subtyping relation to metamodel specifications. In section 6,
we present how the tool provides support for the theory
developed. In section 7, we compare our approach to related
work, finalizing the work with concluding remarks.

2 Example

As a running example, we are using the metamodel specifi-
cations (Mд ,Ωд ) and (Msm ,Ωsm ) for defining graphs and
deterministic state machines, resp., shown in Figure 1. The
model types described by both metamodels are structurally
similar in that they both describe languages of graphs. On

name : String
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name : String

Edgename : String

Graph

*

nodes * edges
source

target

name: String

State
name : String
isCompletion : Bool

Transition
1..*

nodes

1..* edges

source

target
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StateMachine

final

initial

*

Mark
marking

marks
*

Observation
marking

*
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0..1

context Transition inv determism:
not(Transition.allInstances()->exists(t | t.source=self.source and t.target<>self.target))
context Transition inv eventTransition:
name <> '' implies isCompletion=false

context Edge inv map:
not(Edge.allInstances()->exists(t | t.source=self.source and t.target<>self.target))

Figure 1. (Mд ,Ωд ) − top − and (Msm ,Ωsm ) − bottom

the one hand, (Mд ,Ωд ) characterizes the graph of a func-
tion defined over nodes. On the other hand, (Msm ,Ωsm )

characterizes deterministic state machines where transitions
can be triggered by an event (indicated in the name attribute
of the transition) or are triggerless, e.g. they are completion
transitions. These metamodels provide a mechanism to mark
nodes, and states, as already mapped, or as already observed.

We can envisage an operation (Mд ,Ωд ) → (Mд ,Ωд ) for
applying a map in (Mд ,Ωд ) to a particular node by mark-
ing it. Specifically, this operation has been implemented as
an ATL model transformation for (Mд ,Ωд ) that creates an
object Mark for an unmarked node whose predecessor is
marked. Our approach enables the reuse of that operation
for simulating state machines conforming to (Msm ,Ωsm ).
Our structural subtyping mechanism has also been val-

idated with the example used for model subtyping in [31]
and with a second case study on the evolution of modeling
languages. These case studies have been implemented and
are documented at https://mde-subtyping.github.io/web/.

3 Approaches to Model Subtyping

In the recent literature on model transformation, there is
an emerging interest in formalizing mechanisms for reuse
of model transformations [9, 19, 25]. Approaches to reuse
transformation logic involve mechanisms to facilitate its
application in different contexts (by means of typing) or by
extending the logic itself (by means of transformation rule
extension). We are going to focus on the first one, while
laying the foundations for the second one, in order to study
when it is safe to reuse a model management operation.

Regarding typing, working with models in MDE processes
can be done at two levels of abstraction: a white-box ap-
proach (called intra-resource in [34]) where model internals
are exposed so that side effects can be analyzed as model
transformations act upon models; and a more coarse (black-
box) approach (called inter-resource in [34]) where models
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are treated as first-order citizens in model management sce-
narios [6]. Depending on the desired level of rigour, the for-
mer may be regarded as a building block to enable a sound
basis for the latter, i.e. by building model management sys-
tems based on safe model transformations. Refining this
classification around the notion of intra-resource typing, we
find approaches that build on a notion of model type, typi-
cally considering model subtyping or metamodel adaptation,
out of which we are interested in subtyping only.
Model subtyping can be dealt with as a subsumption re-

lation or as model type matching, by generalizing the ho-
mologous notions in OO programming languages [2]. Steel
et al. [31] proposed a type system with type groups in or-
der to formalize the type of a metamodel. Substitutability
in this type system is facilitated by a model type matching
relation, which generalizes the matching relation on type
groups presented in [7] to model types, where a model type
M’ matches a model type M, denoted M’ <# M, iff for each
class C in M, there is a class C in M’ such that the signature
of its operations is preserved1. The type system proposed
relies on class names to match object types, which implies
that the model type for state machines of Fig. 1 would not be
considered a subtype of the model type for graphs without
an explicit adaptation.

In [31], the authors discuss that a name-independent struc-
tural type system is not able to capture classes with no con-
tents that are solely used for adding structure to a concept
taxonomy, e.g. by denoting final states in a state machine.
From a design point of view, the use of empty classes may
be helpful for modeling new concepts at an early stage in
the development process. However, for implementation pur-
poses, this may be considered a design smell, as it violates
the single-responsibility principle. In addition, there are al-
ternative modeling techniques that permit skipping that case
without losing expressive power. For example, one may con-
sider clustering a hierarchy of empty children classes into the
superclass by adding a segregative attribute (e.g. a boolean
attribute isFinal) or by designating different types of classes
by using references (e.g. by using a reference finalStates

from the class StateMachine to the class State).
Guy et al. improved this notion of subtyping as isomor-

phic model subtyping in [19] and introduced non-isomorphic
model subtyping for enabling model adaptation by means
of renaming maps. Guy et al. [19] also discuss the notion
of partial and total subtyping in order to facilitate reuse of
model transformations in practical scenarios. Partial model
subtyping aims at enabling the safe reuse of a model trans-
formation even if only the part of the model type that is used
in the model transformation is present. In this context, Sen
et al. [29, 30] conceptualized this situation as the notion of
effective model type of a transformation: the minimal subset

1Noting that properties are encoded as pairs of generator-mutator methods

in their approach.

of the elements of the input metamodel that is used in the
transformation.
Model transformations based on graph transformation

theory rely on the theory of typed attributed graphs with
type node inheritance [12, 16]. Type checking in this theory
is achieved by constructing a graph morphism between a
graph (the model) and the type graph (the metamodel) that
preserves the structure of the graph. Model subtyping is
supported in graph transformations by means of the notion
of abstract production rule where nodes in a graph pattern
in the rule may correspond to abstract nodes (similar to an
abstract superclass). From a theoretical point of view, given a
graph and an abstract production rule that can be applied to
it, it has been shown that a unique concrete production rule
can be constructed so that the effects of the transformation
on the graph are equivalent to the application of abstract
production rule directly on the graph. This means that the
usual theory for typed attributed graph transformation can
be applied for graph grammars with abstract production
rules, with a notion of object subtyping. Using this theory,
the type graphs representing the metamodels in Figure 1
denote different types of graphs that are not related unless
adaptation mechanisms are used explicitly.

4 Model Types and Subtyping

One of the contributions of this work consists in giving an
interpretation to metamodels (and object-oriented models),
where refinement extension is achieved by (static) subclass-
ing, with model types where refinement is achieved by sub-
typing (subsumption). To distinguish both kinds of type rep-
resentations we are going to useM→ to denote metamodels
andM< to denote model type expressions. This distinction
is necessary in order to consider OCL constraints in model
types, as discussed in the following section.

In this section, we first introduce model type expressions
M< for representing model types ⟦M<⟧ and, subsequently,
define them. Then, we define a notion of model subtyping
based on subsumption. In section 5, we show how a meta-
modelM→ is related to its model type expressionM<

.

4.1 Model Type Expressions

Models in software engineering have a dual interpretation,
namely as ła related collection of instances of metaobjects,
representing (describing or prescribing) an information sys-
tem, or parts thereof, such as a software product or as se-
manticsž, or as ła semantically closed abstraction of a system
or a complete description of a system from a particular per-
spectivež [1]. That is, as syntax or as semantics [20]. Since
metamodels are also models, we differentiate a metamodel
from a model type by saying that a metamodel denotes a
unique model type [3, 5].
Our model types are used as classifiers of objects and

their operations are applied to models, even if they act on

196



SLE’17, October 23ś24, 2017, Vancouver, Canada Artur Boronat

the internals of the model representation. For example, a
model transformation may consist of a sequence of updates
of property values or alter the structure of the model.
In [8], record types are used to model classes of objects,

and thus object types, and union types define tagged values.
That is, whereas an record type (name: String) denotes ob-
jects with a property name, a union type [red : [], blue:

[], green: []] defines the type of those values that con-
tain a single literal, defining an enumeration type. In the
following, we extend the syntax for types presented in [8],
by including referential types and by including notation both
for the types themselves and for their name. The reason for
this is to enable the definition of recursive structures through
referential types.

Definition 4.1. (Extended syntax for types) Given the count-
able setsB = {Oid,Bool, String, Int, Float} of base type names
b, E of enumeration type names ϵ , C of class names c, P of
property names p, the set τ of types over B, E, C and P, is
defined as follows

Type ∋ τ ::= α | ς | µ | τ → τ

TName ∋ α ::= b | ϵ | Void | Any | ρ

RefTName ∋ ρ ::= (ref )?(unique)?(ordered)? c[n..m](#p)?

ObjectType ∋ ς ::= (ϱ) | ()

UnionType ∋ µ ::= [ϱ] | []

PropSetType ∋ ϱ ::= p : α | ϱ, ϱ

where n ∈ N andm ∈ N ∪ {∗}.

[] denotes the bottom type as the least informative type
and Void denotes its name, () denotes the most general type
and Any denotes its name, and τ → τ denotes the type
of a function. Optional sentential forms are denoted with
grouping parentheses and a question mark.
We will use the boolean predicates isRef (ρ), isCmt (ρ),

isOrdered (ρ) and isUnique(ρ) to check whether a property
type expression is a cross reference type expression or a con-
tainment reference type, whether it is ordered and whether
it is unique, respectively. In addition, the projections c(ρ),
lower (ρ), upper (ρ), and op(ρ) obtain the class name, the
lower bound, the upper bound and the opposite property
name (when present), respectively.
p1 : α1, . . . ,pn : αn corresponds to a set of structural

features, where attributes are defined as properties of the
form p : b or p : ϵ, cross-references pointing to a class c are
defined as properties of the form

p : ref (unique)? (ordered)? c[n..m](#p)?

and containments pointing to a class c are defined as proper-
ties of the form p : (unique)? (ordered)? c[n..m](#p)?.

Definition 4.2. (Model Type Expression) Given finite sets
B of base type namesb, C of class names c, E of enumeration
names ϵ and P of property names p, a model type expression

M< is defined as a tuple (type, roots) where: type is an injec-
tive function mapping each class name c to a corresponding
object type ς of the form (p1 : α1, . . . ,pn : αn ), specifying
the structure of the objects of class c, each enumeration
type name ϵ , denoting an enumeration of literals l1, . . . , ln ,
to a union type of the form [l1 : [], . . . , ln : []], Any to (),
and Void to []; roots ⊆ C are the names that designate the
root metaclasses in the metamodel inducing the union type
[
⋃

c ∈roots (c : unique c[0..∗])], which we denote by µ (M< ).

In our approach, a model may consist of heterogeneous
root objects. When considering models in a purely graph-
theoretic sense, one needs to consider all classes as roots. The
model type expression corresponding to the state machine
metamodel of Fig. 1 has the root class name StateMachine

and type is defined as follows:

type(StateMachine) = (id: Oid , name: String ,

nodes: unique ordered State [1..*] ,

edges: unique ordered Transition [1..*] ,

marking: unique ordered Observation [0..*] ,

initial: ref State [1..1] ,

final: ref unique ordered State [0..*])

type(State) = (id: Oid , name: String)

type(Transition) = (id: Oid ,

name: String , isCompletion : Bool ,

source: ref State [1..1] , source: ref State [1..1])

type(Observation) = (id: Oid , marks: ref State [0..1])

4.2 Semantics of Model Type Expressions

We borrow the semantic domain from [8], where V is the
universal value domain of all computable values.We consider
that V contains the set of typed object identifiers O and refer
to object identifiers of objects that are instance of a particular
class c as Oc .
We refine the semantics for type expressions as model

type expressions in order to consider referential types and
the different types of constraints definable in a metamodel.
The semantics of a referential type expression ρ of the form

p : (ref )? (unique)? (ordered)? (c | Any)[n..m](#p′)?

is given by the expression ⟦ρ⟧r where r is an optional pa-
rameter referring to the record containing the field p. The
expression ⟦ρ⟧r is defined as follows:

• If ρ denotes a referential type (with prefix ref ) of c that
is ordered, then the type is ⟦List (Oc )⟧, where List (Oc )
can be regarded as the space of injective functions
N→ Oc (where N ⊆ V is the set of natural numbers
and the index determines the ordering). If it is not
ordered, then the type is ⟦Baд(Oc )⟧, where Baд(Oc )
can be regarded as the space of non-injective functions
N→ Oc , where the index is only used to distinguish
different occurrences of the same value.
• Otherwise, ρ denotes a containment type (an object
type) of class c and if it is ordered, then the type is
⟦List (type(c ))⟧, where List (type(c )) can be regarded
as the space of injective functions N→ type(c ). In this
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case, the domain type(c ) of such functions is the class
of objects of type c and not just a set of references. Like-
wise, if it is not ordered the type is ⟦Baд(type(c ))⟧.

Also there may be constraints regarding multiplicities,
uniqueness and bidirectionality that restrict the correspond-
ing referential types. Such constraints are encoded as follows:

• For referential types, assuming we have a collection
of identifiers ic (either a list or a bag), multiplicity
constraints [n..m] are encoded as follows |ic | ≥ n ∧

( |ic | ≤ m ∨ |ic | = ∗). The constraint is encoded
likewise for containment types.
• For referential types, assuming we have a collection
of identifiers ic (either a list or a bag), the uniqueness
constraint is encoded as follows |ic | = |set (ic) |, where
set is the operator that extracts a set from a list or a bag
by filtering out duplicates. The constraint is encoded
likewise for containment types.
• For referential types, when the parameter r in ⟦ρ⟧r is
present, the bidirectionality constraint
p : ref c[n..m]#p ′, where p (r ) = ic2 is encoded as fol-
lows ∀i′ ∈ ic(∃r ′ ∈ R(r ′ ∈ ⟦type(c )⟧ ∧ id (r ′) =

i′ ∧ id (r ) ∈ p ′(r ′))). For containment types, the
constraint is encoded likewise but we fetch the object
identifier of the contained object by inspecting the
field id.

For a property p : α defined in an object type ς , a full encod-
ing of the semantics denoted by the expression ⟦α⟧r , where
r ∈ ⟦ς⟧, can be obtained by enumerating the 16 combina-
tions of constraints definable in referential and containtment
type expressions in addition to the cases for attributes.

For defining model types, we consider the universal value
domain V of all computable values, the domain R of records,
the domain µ of union values (variants) and the set F of con-
tinuous functions f from V to V. We refine the semantics for
type expressions as model type expressions in order to con-
sider referential types and the different types of constraints
definable in a metamodel as follows:

⟦b⟧ = Db ∈ V ⟦ϵ⟧ = ⟦type(ϵ )⟧

⟦Void⟧ = ⟦[]⟧ ⟦Any⟧ = ⟦()⟧

⟦(ϱ)⟧ =
⋂

p :α ∈ϱ {r ∈ R | p(r ) ∈ ⟦α⟧r } ∈ V

⟦[ϱ]⟧ =
⋃

p :α ∈ϱ {⟨p,v⟩ ∈ U |v ∈ ⟦α⟧} ∈ V

⟦()⟧ = R ∈ V ⟦[]⟧ = {⊥} ∈ V

⟦τ1 → τ2⟧ = { f ∈ F |v ∈ ⟦τ1⟧ ⇒ f (v ) ∈ ⟦τ2⟧} ∈ V

where the notation ⟨p,q⟩ denotes pairs of values p and q.

4.3 Model Subtyping

In this section, we extend the object subtyping (subsumption)
relation [8] to model types. Model subtyping emerges from

2p(r ) denotes the projection of the value of field p in record r .

object subtyping and it is implicitly defined when a pair of
model type expressions are given.
To extend the subtyping relation, we need to introduce

how referential types and containment types are related. We
do so by introducing an incompatibility relation
/ ⊆ RefTName × RefTName, which captures the subtyp-
ing violations (regarding multiplicities, ordering, uniqueness
and bidirectionality) between two property type expressions.
That is, an object type expression ς1 containing a referential
type expression p : α1 that is incompatible with a referential
type expression p : α2, with the same name p, of another
object type expression ς2 means that ς1 does not denote a sub-
type of the type denoted by ς2. The incompatibility relation
/ is defined as follows:

ρ1 / ρ2 ⇐⇒ lower (ρ1) < lower (ρ2)

∨ ((upper (ρ1) , ∗ ∧ upper (ρ2) , ∗)

⇒ upper (ρ1) > upper (ρ2))

∨ (upper (ρ1) = ∗ ⇒ upper (ρ2) , ∗)

∨ (not (isOrdered (ρ1)) ∧ (isOrdered (ρ2)))

∨ (not (isUnique(ρ1)) ∧ (isUnique(ρ2)))

∨ op(ρ1) , op(ρ2)

Given two model typesM<

sub
andM<

super , the extended sub-
typing relation ≤:β ⊆ Type × Type, where β ⊆ C × C

captures the names of those object types that have been
related already, is defined as follows:

b ≤:β b

Int ≤:β Float (base type names)

ϵ1 ≤:β ϵ2 ⇐⇒ type(ϵ1) ≤:β type(ϵ2)

(enum type names)

c ≤:β Any

Void ≤:β c

c1 ≤:β c2 ⇐⇒ type(c1) ≤:β type(c2) (class names)

ρ1 ≤:β ρ2 ⇐⇒ (c(ρ1), c(ρ2)) ∈ β ∨ (not (ρ1 / ρ1)

⇒ type(c(ρ1)) ≤:β∪{(c(ρ1 ), (c(ρ2 ))) } type(c(ρ2)))
(referential types)

(ϱ) ≤:β ()

[] ≤:β (ϱ)

(ϱ1) ≤:β (ϱ2) ⇐⇒ ∀p : α2 ∈ ϱ2 (∃p : α1 ∈ ϱ1 (α1 ≤:β α2))

(object types)

[] ≤:β [ϱ]

[ϱ1] ≤:β [ϱ2] ⇐⇒ ∀p : α1 ∈ ϱ1 (∃p : α2 ∈ ϱ2 (α1 ≤:β α2))

(union types)

σ1 → τ1 ≤:β σ2 → τ2 ⇐⇒ σ2 ≤:β σ1 ∧ τ1 ≤:β τ2
(function types)

The semantics of subtyping is given by set inclusion of do-
mains [8, Theorem Semantic Subtyping].
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Theorem 4.3 (Extended semantic subtyping).

τ ≤:∅ τ ′ ⇒ ⟦τ ⟧ ⊆ ⟦τ ′⟧

The proof is similar to that of Theorem Semantic Sub-
typing in [8] while considering the 16 types of constraints
imposable on referential types and noting that β acts as a
memory of already paired class names for traversing refer-
ential types effectively.

We generalize the notion subtyping to the notion of model
subtyping through the object type of the root objects of a
model as follows:

Definition 4.4 (Syntactic Model Subtyping).

M<

1 ≤: M
<

2 ⇐⇒ µ (M<

1 ) ≤:∅ µ (M<

2 ).

5 Metamodel Specifications and Subtyping

In this section, we are going to use the notion of metamodel
specification to refer to metamodelsM→ enriched with a
set of OCL constraints Ω. We are going to abuse the nota-
tionM→ to refer to any OO representation for metamod-
els where object subtyping is represented ontologically and
where its semantics corresponds to subclassing (e.g. USE
class diagrams, EMF metamodels), abstracting away from
the syntactic specificities of each OO representation. Thus,
our metamodelsM→ may refer to EMF metamodels or to
USE class diagrams interchangeably.

Next, we introduce a representation for metamodelsM→

and recall their semantics as object models σ (M→), given
in [27], by slightly adapting their syntax. Then, we show how
a metamodelM→ determines a model type expressionM<

by means of a syntax transformation decl :M→ 7→ M<
,

which is used to triangulate σ (M→) with ⟦M<⟧, reflecting
the notion of model subtyping from model type expressions
to metamodels. Finally, we extend the syntactic subtyping
relation to metamodel specifications, defining its semantics.

5.1 Syntax of Metamodel Specifications

As the the typical representation ofmetamodels (normally de-
picted as class diagrams) is not aware of some type-theoretic
constructs (such as union types) and the object subtyping
relation is explicitly defined as a subclassing relation, we
provide an alternative representation for metamodelsM→.
Given the countable sets B of base type names b, E of enu-
meration type names ϵ , C of class names c, P of property
namesp, a metamodelM→ is a tuple (Class,≺,Enum,Cons)
where: Class ⊆ C is a countable set of class names;
≺ ⊆ C × C is a subclassing relation (allowing for multiple
inheritance); Enum ⊆ E is a countable set of enumeration
type names; and Cons is the set of constraints defined by a
metamodel.
The constraints in Cons are given as propositions of the

form: isAbstract (c ) holds if class c is abstract; p(c ) holds
if class c contains a structural feature with name p; l (ϵ )
holds if l is a literal of the enumeration type denoted by ϵ ;

type(c, p) = t , where t ∈ B ⊔Enum⊔Class defines the type
of a structural feature, which is an attribute if t ∈ B ⊔ Enum
and a reference if t ∈ Class; cont (c, p) holds if the structural
feature p is a containment reference; for n ∈ N and m ∈

N ∪ {∗}, lower (c, p) = n and upper (c, p) = m, such that
n ≤ m, denote the lower and upper bounds of references;
unique(c, p) holds if the structural feature is unique (when
upper (c, p) > 1); ordered (c, p) holds if the structural feature
is ordered (when upper (c, p) > 1); opposite (c, p, c ′, p′) holds
if the structural feature p(c ) is defined as opposite of p′(c ′),
defining a bidirectional association.

5.2 Mapping Metamodels to Their Model Types

The interpretation σ (M→) of a metamodelM→ is usually
given in terms of the set of metamodel-conformant models,
which are normally represented as object diagrams. In this
subsection, we map a semantics σ (M→) to ⟦M→⟧ ⊆ V in
our semantic domain in order to enable structural model
subtyping for metamodelsM→.
We focus on the abstract syntax of object diagrams by

using attributed graphs [16], which are defined in terms
of E-graphs. An E-graph has two different types of nodes,
graph and data nodes, and three kinds of edges, namely
regular edges, and edges for node and edge attribution. An
E-graph [16, Def. 8.1] is defined as a tuple

(NG ,ND ,EG ,ENA,EEA, (sourcej , target j )j ∈{F ,NA,EA} ),

where: NG and ND are the sets of graph and data nodes,
resp.; EG , ENA and EEA are the sets of graph, node attribute
and edge attribute, resp.; and source and target functions are
defined as
sourceG , targetG : EG → NG ,

sourceNA : ENA → NG ,

targetNA : ENA → ND ,

sourceEA : EEA → EG , and
targetEA : EEA → ND .

Let DSIG = (SD ,OPD ) be a data signature with attribute
value sorts S ′D ⊆ SD , AG is defined as the set of attributed
graphs of the form (G,D), where G is an E-graph and D is a
DSIG-algebra.

To define the model type that corresponds to each meta-
model we need to relate the semantics of a metamodelM→

to a model type ⟦M<⟧. Given the set Union of union values,
such link will be achieved by means of a map

↑<→: AG→ Union

that obtains a union value from an attributed graph (or object
diagram) and then we generalize ↑<→ to all possible attributed
graphs definable by a metamodel, mapping the semantics of
metamodels to the semantics of model types.
↑<→ is defined by the equation

↑<→ (G ) ≜ ⟨root = oc⟩,
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where oc consists of objects {id = id (n), ps} defined from
nodes n ∈ NG , where ps is defined as the set union of prop-
erties defined from edges in EG and EEA as follows:

• p = v where v = tarдet (e ) such that e ∈ ENA and
source(e ) = n and name (e ) = p;
• p = ic where ic = {id (tarдet (e )) | e ∈ EG , source(e ) =
n,name (e ) = p}.

Wedenote the function spaceAG→ Union as ⇑<→ . The in-
terpretation of a metamodelM→ is given as the set σ (M→)
of system states definable usingM→. Ignoring the represen-
tational gap, we assume that σ (M→) ⊆ P (AG).3 Hence, the
model type of a metamodelM→ is given as

⟦M→⟧ ≜ ⇑<→ (σ (M→)).

And, consequently, there must be a syntax transformation
decl :M→ 7→ M< so that

⇑<→ (σ (M→)) = ⟦decl (M→)⟧.

Note that, in this setting, we are not considering ametamodel
M→ as mere abstract syntax for a model type expression
M<
, as both syntactic representations, which have different

semantics, are only related by decl. This gives us the sufficient
equipment for reflecting the subtyping relation from model
type expressions to metamodels:

Definition 5.1 (Metamodel subtyping).

M→1 ≤: M
→
2 ⇐⇒ decl (M→1 ) ≤: decl (M→2 )

WhenM→
1
≤: M→

2
, we have that ⟦M→

1
⟧ ⊆ ⟦M→

2
⟧.

5.3 Semantics of Metamodel Specifications

In this subsection, we present how metamodel specifica-
tions (M→,Ω) declare model types by extending metamod-
els M→ with OCL expressions Ω. The semantics of OCL
expressions is reused from [27, 28]. It is worth noting that
Clark et al. provided a formal semantics for OCL [10] that
is more amenable to our model type expressions from a se-
mantic point of view, if we consider the MML calculus [11].
However, the USE semantics comes equipped with the tool
support that we need in subsequent sections.

We first define the semantics of a metamodel specification
(M→,Ω) using the original USE semantics I⟦Ω⟧(M→, Γ),
where Ω is a set of OCL invariants and Γ is the environment
of variables for evaluating the OCL invariants Ω, and then
we define the corresponding model type.

The original OO semantics of a metamodel specification
(M→,Ω) (representing an object model4) can be extended

3This proposition relies on the following observation: a system state for a

metamodelM→ is defined as a structure σ (M→) = (σClass, σAtt, σAssoc)

in [27], where σClass resembles NG , σAtt resembles ENA , and σAssoc re-

sembles EG . The direction of the set inclusion is justified by the fact that

E-graphs in AG are not necessarily typed.
4Noting: that the syntax we introduced for object models only considers

binary associations (without an explicit name for the association); that at-

tribute operation signatures p : Class→ B ⊔ Enum can be extracted from

as follows:

σ ((M→,Ω)) = {G ∈ σ (M→) | I⟦Ω⟧(M→, ∅) = true}.

We define the satisfaction of OCL constraints Ω in a meta-
modelM→ as follows

|=M→ (Ω) ≜ σ ((M→,Ω)).

We write ̸ |=M→ (Ω) whenever |=M→ (Ω) = ∅. We write
G |=M→ (Ω) whenever a model G conforms to a metamodel
specification (M→,Ω), that is G ∈ σ ((M→,Ω)).

The model type of a metamodel specification (M→,Ω) is
defined as follows:

Definition 5.2 (Model Type of (M→,Ω)).

⟦(M→,Ω)⟧ ≜ ⇑<→ (σ ((M→,Ω)))

5.4 Metamodel Specification Subtyping

To check if there are inconsistencies due to the co-existence
of OCL constraints of the model subtype and of the model
supertype, an extension metamodelM→

sub,super
is synthesized

from metamodelsM→
sub

andM→super . The main purpose of

M→
sub,super

is twofold: its semantics ⟦M→
sub,super

⟧ subsumes

the semantics of ⟦M→
sub
⟧ while it is subsumed by the seman-

tics of ⟦M→super⟧, that is

⟦M→sub⟧ ⊆ ⟦M
→
sub,super⟧ ⊆ ⟦M

→
super⟧; (1)

and it reifies M→
sub
≤: M→super as an explicitly declared

(static) subclassing relation ≺ between classes ofM→
sub

and
classes of M→super − that is, for any csub ∈ Classsub and
csuper ∈ Classsuper ,

csub ≺ csuper ⇐⇒ type(csub) ≤: type(csuper ). (2)

In the following, the synthesis process is discussed and il-
lustrated with the running example. We assume that the
set of classifier names for M→

sub
and M→super are disjoint.

If that is not the case, a renaming has to be applied to
the classifiers of the subtype metamodel first so as to en-
sure that precondition. Given the metamodels M→

sub
and

M→super , and a subclassing relation ≺ between their classes,

the operation synth(M→
sub
,M→super ,≺) produces a metamodel

M→
sub,super

that is defined as follows:

Initialization. Initially, the set Classsub,super of classifiers
ofM→

sub,super
is formed by those ofM→

sub
and ofM→super . Then,

the subclassing relation ≺sub,super forM
→
sub,super

is obtained

as follows ≺sub,super =≺sub ∪ ≺super ∪ ≺ . Classes of the
supertype are made abstract by adding constraints

⋃

c ∈Classsuper

isAbstract (c ) (3)

to Conssub,super . These constraints are added to narrow down
the search for inconsistencies to ⟦M→

sub
⟧.

propositions of the form p(c ) and type(p) = t where t ∈ B ⊔ Enum; and

that compositions are immaterial in USE format.
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Figure 2. Synthesized metamodelM→sm,д

Virtual superclass extraction. ≺sub,super is analyzed and
for each class that inherits the same feature f declared in
two different superclasses sc1 and sc2, we extract an abstract
virtual superclass sc1,2, where the order in the subscript 1, 2
is inessential, of the two superclasses sc1 and sc2 in order
to ensure the diamond property. The feature f is pulled up
to the virtual superclass sc1,2 (and removed from the super-
classes sc1 and sc2).Classsub,super is augmentedwith sc1,2 and
≺sub,super is augmented with (sc1, sc1,2) and (sc2, sc1,2). This
analysis is repeated recursively until all virtual superclasses
and the corresponding specialization links are added.

Preserving the semantics of subclassing. The next step
consists in pulling up common features from classes in the
subtype metamodelM→

sub
to classes in the supertype meta-

modelM→super . For each class csub ∈ Classsub that declares a

feature p(csub) ∈ Conssub such that there is an ancestor class
csuper ∈ Classsuper declaring a feature p(csuper ) ∈ Conssuper ,
the structural feature p(csuper ) is added to Conssub,super and
removed from Conssuper together with all the constraints
defined for p. In addition, the constraints of feature p for csub
in Conssub are redefined for csuper and added to Conssub,super
while they are removed from Conssub together with p(csub).
This means that the feature p is pulled up from csub to the an-
cestor csuper (and removed from csub). The rest of constraints
fromConssub andConssuper are added toConssub,super . Hence,
⟦M→

sub,super
⟧ ⊆ ⟦M→super⟧.

The resulting extensionmetamodelM→sm,д for the running
example is depicted in Fig. 2, where the multiplicities for the
references nodes and edges fromM→sm have been preserved.
InM→sm,д , two virtual classes, GraphNode and GraphNodeEdge,
have been extracted in two consecutive iterations.
For extending model subtyping to metamodel specifica-

tions using the construction presented above, we are going
to use the extension metamodelM→

sub,super
synthesized by

means of synth(M→
sub
,M→super ,≺sub,super ) where

≺sub,super=M
→
sub ≤: M

→
super ∩ Classsub × Classsuper .

Note that property (1) is satisfied as
⟦M→

sub
⟧ ⊂ ⟦M→

sub,super
⟧ by definition. In the example, we can

have models inM→sm,д , such an object StateMachine pointing
to an object Transition through the reference nodes, that are

not valid models inM→sm . In addition, the preservation of the
constraints of structural features inM→

sub
when extracting

virtual classes forces ⟦M→
sub,super

⟧ ⊆ ⟦M→super⟧. For instance,

in the example, objects of type State are of type Node as the
properties of type(Node) are included in type(State).
On the other hand, the property (2) is ensured by con-

structing ≺ as explained above, since the extracted virtual
classes have a counterpart in the semantic domain as the
meet types of the corresponding object types.

Definition 5.3 (Syntactic Model Subtyping with Metamodel
Specifications).

(M→sub,Ωsub) ≤: (M→super ,Ωsuper ) ≜

M→sub ≤: M
→
super ∧ |=M→

sub,super
(Ωsub ⇒ Ωsuper )

Theorem 5.4 (Semantic Model Subtyping with Metamodel
Specifications).

(M→sub,Ωsub) ≤: (M→super ,Ωsuper ) ⇒

⟦(M→sub,Ωsub)⟧ ⊆ ⟦(M
→
super ,Ωsuper )⟧

Proof. AsM→
sub
≤: M→super , there is a synthesizedmetamodel

M→
sub,super

in which both Ωsub and Ωsuper can be satisfied.

By the construction ofM→
sub,super

, we have that

⟦(M→sub,Ωsub)⟧ ⊆ ⟦(M
→
sub,super ,Ωsub)⟧.

Since |=M→
sub,super

(Ωsub ⇒ Ωsuper ), then

⟦(M→sub,super ,Ωsub)⟧ ⊆ ⟦(M
→
sub,super ,Ωsuper )⟧.

By the construction ofM→
sub,super

, we have that

⟦(M→sub,super ,Ωsuper )⟧ ⊆ ⟦(M
→
super ,Ωsuper )⟧.

Hence, ⟦(M→
sub
,Ωsub)⟧ ⊆ ⟦(M

→
super ,Ωsuper )⟧. □

5.5 Model Management Operation Specifications

In this section, we extend function types to metamodel spec-
ifications in order to specify model management operations

(M→pre ,Ωpre ) → (M→post ,Ωpost ),

where (M→pre ,Ωpre ) specifies its preconditions and

(M→post ,Ωpost ) specifies its postconditions. An operation

specified by (M→pre ,Ωpre ) → (M→post ,Ωpost ) can be applied

to models conforming to a metamodel specification
(M→ac ,Ωac ) if (M

→
ac ,Ωac ) ≤: (M→pre ,Ωpre ). On the other

hand, we can reuse the results of this operation as models
conforming to a (possibly different) metamodel specifica-
tion (M→ac ,Ωac ) if (M

→
post ,Ωpost ) ≤: (M→ac ,Ωac ). The first

condition ensures that the operation can rely on values of
(M→ac ,Ωac ) and the second condition guarantees that its out-
puts will not create any problem in the expecting context.
In our running example, (M→д ,Ωд ) → (M→д ,Ωд ) can

be applied to a model in (M→sm ,Ωsm ) as is for simulating a
deterministic state machine. This will result in the creation
of objects Mark, which can be automatically coerced to the
type Observation as explained in section 6.3.
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6 Tool Support

The theory described in previous sections is implemented as
a Java library that facilitates reuse inMDE. Specifically, given
two metamodel specifications (M→

sub
,Ωsub) and

(M→super ,Ωsuper ), whereM
→
sub

andM→super are EMF metamod-
els and Ωsub and Ωsuper are sets of OCL constraints in USE
format (whose contextual types are defined in M→

sub
and

M→super resp.), the tool will determine whether (M→
sub
,Ωsub)

denotes a model subtype of the model type denoted by
(M→super ,Ωsuper ). Note that any of the sets of OCL constraints
may be empty.

If the check fails, there are two main sources of incompati-
bilities: the model types denoted by the metamodels, and the
OCL constraints. In the first case, the tool points at the source
of the problem by showing the classes of the supertype meta-
modelM→super that are not extended by classes ofM→

sub
. That

information is useful to assess the advantage of, for exam-
ple, prunning the supertype metamodel by computing the
effective metamodel [29] w.r.t. a specific model management
operation. In the second case, the tool will provide evidence
that contradicts the compatibility property in Def. 5.3 of
M→

sub
w.r.t.M→super in the form of a model G ∈ ⟦M→

sub,super
⟧,

represented in EMF notation (that is in XMI format), that
invalidates a constraint in Ωsuper .

If the check succeeds, the tool guarantees that (M→
sub
,Ωsub)

is a structural refinement of (M→super ,Ωsuper ). Hence, any
model management operation that is defined for
(M→super ,Ωsuper ) can be safely applied to models of

(M→
sub
,Ωsub). Going one step further, the tool also facilitates

the reuse of such operation, when it is based on EMF, by au-
tomatically synthesizing an extension metamodelM→

sub,super

that can be substituted forM→super in the signature of the
operation ensuring its application to models conforming to
⟦(M→

sub
,Ωsub)⟧ without any further change.

In the following subsections, we explain how the tool
reuses a third-party bounded model finder for verifying the
compatibility property of Def. 5.3 and we discuss how our
subtyping relation ≤: can be used to deal with multiple,
dynamic and partial model typing.

6.1 Analysing OCL Constraints

In our tool we have adapted excerpts of TOTEM-MDE [15]
in order to integrate the USE Validator [22] with EMF. For
computing whether (M→

sub
,Ωsub) ≤: (M→super ,Ωsuper ) holds,

the property |=M→
sub,super

(Ωsub ⇒ Ωsuper ) needs to be verified.

Assuming Ωsuper is of the form
∧

i context ci inv: ωi , we
negate the property to be checked, obtaining

|=M→
sub,super

(Ωsub ∧

context c inv:

∨

i

ci.allInstances()->exists(¬ωi))

where c is any class name from Classsuper .

If the negated property turns out to be satisfiable, a model
G conforming toM→

sub,super
, that is G ∈ ⟦M→

sub
⟧ is returned,

showing that there is an inconsistency that needs to be re-
solved. Subject to the appropriateness of the bounds provided
for the analysis, if the negated property turns out to be unsat-
isfiable, the original property holds and (M→

sub
,Ωsub) defines

a subtype of the model type denoted by
(M→super ,Ωsuper ). In the running example, we have that

(M→sm ,Ωsm ) ≤: (M→д ,Ωд ) but (M
→
sm , ∅) ̸≤: (M→д ,Ωд ),

where (M→sm , ∅) denotes a model type of non-deterministic
state machines.

6.2 Multiple and Strict Typing

Given two metamodel specifications (M→
1
,Ω1) and

(M→
2
,Ω2), when we compute (M→

1
,Ω1) ≤: (M→

2
,Ω2), we

obtain multiple inheritance semantics [8], that is multiple
typing, by default. However, we can force strict typing in
contexts where multiple typing is not allowed by obtain-
ing the synthesized metamodel using a strict specialization
relation ≺s⊆ Classsub × Classsuper where

c1 ≺
s c2 ⇒ type(c1) ≤:∅ type(c2) ∧ c1 ≺

s c3 ⇒ c2 = c3.

Note that there may be many such strict specialization
relations in (M→

sub
,Ωsub) ≤: (M→super ,Ωsuper ). Our tool enu-

merates all of them, and for each specialization relation ≺s , it
computes: the extension metamodel
synth(M→

sub
,M→super ,≺

s ); the complement supertype meta-

model↗ (M→
sub
,M→super ,≺

s ) defined as the effective meta-
model of those classes in Classsuper , including their features
and associated multiplicity constraints, that do not appear
in the image of ≺s ; the complement subtype metamodel
↘ (M→

sub
,M→super ,≺

s ) similarly defined for those classes in
Classsub that do not appear in the preimage of ≺s ; and a rank
representing the model size of the complement metamodels.

The strict specialization relation ≺s with the lowest rank
is the solution that provides the maximal model subtype w.r.t.
strict model subtyping. When computing
(M→

sub
,Ωsub) ≤: (M→super ,Ωsuper ) using strict typing mode,

the tool recommends the specialization relation ≺s with the
lowest rank and will compute the satisfaction of OCL con-
straints using the synthesized metamodel
synth(M→

sub
,M→super ,≺

s ). In case of a tie, one strict special-
ization relation is chosen arbitrarily. However, the user can
still inspect the other strict specialization relations which
are enumerated by recommendation order, together with
their corresponding synthesized metamodel and comple-
ment metamodels.

In the example, when forcing strict model subtyping, the
extension metamodel synth(M→sm ,M

→
д ,≺

s ) that is recom-
mended is depicted in Fig. 3, together with the complement
of the subtype metamodel ↘ (M→sm ,M

→
д ,≺

s ). The com-

plement of the supertype metamodel↗ (M→sm ,M
→
д ,≺

s ) is
empty indicating that all object types have been covered by
the model subtyping relation induced by ≺s .
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Figure 3. synth(M→sm ,M
→
д ,≺

s ) (top) and

↘ (M→sm ,M
→
д ,≺

s ) (bottom)

6.3 Dynamic Typing

Dynamic typing, understood as the property of an object to
change its type while preserving its identity, can be imple-
mented by using the construction of synthesized metamod-
els. A model operation (M→in ,Ωin ) → (M→out ,Ωout ) can be
reused for models conforming to a metamodel specification
(M→creation ,Ωcreation ) such that
(M→creation ,Ωcreation ) ≤: (M→in ,Ωin ), which entails the ex-
istence of an extension metamodelM→creation,in . That is the
subtyping relation between two model types is inferred in
M→creation,in , if it exists within the bounded search space.
The extension metamodel is synthesized as explained in
section 5.4, but without adding constraints of the form (3)
in order to enable side effects of model management op-
erations that work with supertype classes. The extension
metamodel facilitates the reuse of model management op-
erations that may be implemented using EMF-based tech-
nology. As EMF relies on a nominal type system, two cases
need to be considered when applying the operation: when
no new instances of classes in Classcreation,in are created,
that is only updates are applied; and when new instances of
classes in Classcreation,in are created. In the first case, the
resulting model conforms to (M→creation ,Ωcreation ) without

further changes5. In the second case, we need to apply a co-
ercion operation for casting down objects to classes defined
in (M→creation ,Ωcreation ).
For a model G ∈ ⟦(M→in ,Ωin )⟧, the coercion operation

G asM→creation with ≺s

where ≺s is a strict subtyping relation between classes in
Classcreation and Classin , requires all mandatory features
in↘ (M→creation ,M

→
in ,≺

s ) to have a default value. That is,
those mandatory structural features that are not initialized
in the operation need to be properly defined in a model.

5When the precondition of disjoint classifier names is not satisfied, the sub-

typing method for metamodel specifications applies an automatic renaming.

This forces the use of a retyping G′ of models G ∈ ⟦M→
creat ion

⟧ so that

G′ ∈ ⟦M→
creat ion,in

⟧. The tool offers automated support for applying

adaptations of this kind based on the synthesized extension metamodel, as

illustrated with an example at https://mde-subtyping.github.io/web/.

The coercion operator changes the type of those objects in
G , whose type is a class csuper ∈ Class∈, for the greatest class
csub, with respect to ≺creation , in Classcreation such that
csub ≺

s csuper . The operator is not defined when the choice of
csub is not unique − e.g. when multiple inheritance is used in
M→in . In the strict subtyping relation of Fig. 3, the simulation
operation (M→д ,Ωд ) → (M→д ,Ωд ) creates a new object
Mark, marking the state that has been executed. The type of
the created objects is known in the extension metamodel
M→sm,д but not in (M→sm ,Ωsm ). The coercion operator can
then be applied to cast them down to the type Observation,
yielding a valid model inM→sm .

6.4 Partial vs Total Typing

Given two metamodel specifications (M→
sub
,Ωsub) and

(M→super ,Ωsuper ), if (M→
sub
,Ωsub) ≤: (M→super ,Ωsuper ) then

(M→super ,Ωsuper ) totally types the models that conform to

(M→
sub
,Ωsub). In such case, | ↘ (M→

sub
,M→super ,≺) | = 0.

When this equation does not hold, the complement of the
subtype metamodel with respect to the inferred specializa-
tion relation ≺, which may or may not be strict, tells us that
(M→super ,Ωsuper ) is only a partial type for models that con-

form to (M→
sub
,Ωsub), explaining what parts of such models

are not typed by (M→super ,Ωsuper ). In the example of Fig. 3, the

complement↘ (M→sm ,M
→
д ,≺

s ) of the subtype metamodel
shows that the references initial and final are not cov-
ered by the supertype metamodel in synth(M→sm ,M

→
д ,≺

s ),

which is useful for selecting a specific strict subtyping.
On the other hand, when in the complement of the super-

type, we have that | ↗ (M→
sub
,M→super ,≺) | , 0, thenM→

sub
is not a subtype ofM→super . To improve the reuse of model
management operations in this situation, we can compute
the effective metamodel of the model management operation
inducing a more general model type, removing those OCL
constraints that become redundant.

7 Related Work

Steel et al. [31] formalized the notion of model type as a
type group, generalizing the notion of object typing. Ours is
formalized as a union type instead, enabling the possibility
of having heterogeneous root objects in a model. In [19],
as the isomorphic subtyping relation based on model type
matching is too strict, a non-isomorphic subtyping relation
based on adaptation was introduced in order to facilitate
more flexible reuse of model management operations, such
as class renamings. Our subtyping relation approach can,
however, work both for nominal and for structural type
systems providing support for metamodels. This means that
subtyping is not simply isomorphic as it works modulo class
renaming for any possible renaming, which need not be
known a priori.
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Based on the notion of model subtyping in [31], Sen et
al. [30] presented a mechanism to reuse model transforma-
tions by means of their effective metamodelM→in . A model
transformation is then made reusable by manually weaving
aspects of the effective metamodelM→in with the metamodel
M→

actual
for which the transformation is to be applied so

thatM→
actual

becomes a subtype ofM→in . In our approach,
the extension metamodelM→

actual,in
that facilitates the sat-

isfiability of the model subtyping relation between two meta-
model specifications corresponds to the weaved metamodel
that enables the reuse of the transformation. However, in our
case, the extension metamodel is synthesized automatically
and OCL constraints are considered.
Regarding as-is reuse of model transformations, Lara et

al. proposed a-posteriori typing specifications [14] for de-
coupling the creation interpretation of a metamodel, when
regarded as a template for new models, from their role inter-
pretation, when regarded as a classifier for existing models.
These specifications can be applied both to the type level
and to the instance level, providing support for multiple,
partial and dynamic typing. Bidirectional typing specifica-
tions are formalized in [13], providing support for backward
compatibility to the original metamodel when reusing an-
other operation. Our synthesis of the extension metamodel
resembles the construction of the analysis metamodel for
reasoning about OCL constraints in [13]. An important dif-
ference relies in the inference of inheritance relationships.
Moreover, when there are name clashes in features from
the resulting superclasses and subclasses, they rename the
features in the superclass and add an additional OCL con-
straint to enforce that their values are the same. We solve
this problem, by applying a refactoring that preserves the
type of the feature in the subtype, which may be more re-
strictive, both avoiding duplicate code and skipping the use
of auxiliary OCL constraints. Their approach cannot solve
the problem described in the introduction as typing specifi-
cations are defined explicitly and require knowledge about
the involved metamodel specifications a priori. The motiva-
tion behind our approach focusses on checking subtyping
automatically without up-front manual intervention, leaving
out explicit adaptation. In our case, re-typing is implicitly
handled through the model subtyping relation and explicit
re-typings (coercion) are only required when reusing EMF
model management operations, as explained in section 6.3.
On the other hand, our approach is framed at the type level.
Varró et al. also use ontological typing of objects in

VPM [33] for defining metamodel conformant models. More
interestingly, they provide a refinement calculus that handles
(multiple) inheritance and instantiation, which provides a
subsumption relationship between metamodels. Although
they consider refinement of behavioural specifications, they
can only reason with a subset of the metamodels expressible
in EMF as they do not consider well-formedness constraints.

Graph constraints, introduced by Heckel et al. in [21]
for plain graphs, and later extended by Taentzer et al. to
graphs with type node inheritance in [32], capture a notion
of metamodel specification that is similar to the one that
we are dealing with. Propagation of constraints along model
transformations, which can be regarded as adaptations, spec-
ified by triple graph grammars is considered by Harmut
in [17]. Constraint propagation determines when a target
metamodel, which can have its own constraints, is compati-
ble with respect to the constraints of the source metamodel.
Our proposal does not require an explicitly defined up-front
mapping and the underlying theory is available in a tool.

Zschaler [35] introduced an abstract notion of model type
with constraints as a graph, with class names as nodes and as-
sociations as edges, coupled with a conjunction of first-order
constraints over the graph signature. A model matching re-
lation is used to match a metamodel to its model type and a
type system is provided to infer the minimal model types of
a model management operation. The constraints that can be
inferred refer to multiplicity bounds and to whether a class
is abstract or not. When a model management operation is
invoked over a model, the type system checks that the model
satisfies the constraints of the model type associated with
the parameter. Thus, model subtyping is implicitly taken
care of by constraint satisfaction allowing for reuse. The
inferred minimal model type is similar, in its intent, to the
model type of an effective metamodel, which is assumed to
be inferred from a model transformation, in our approach.
On the other hand, the notion of model type has not been
discussed independently of type inference for a model man-
agement operation and is, then, tied to the language used for
defining model management operations, which is, at present,
less expressive than those used in practice.

None of the approaches researched above consider reason-
ing on metamodels, which are not related a priori, enriched
with OCL constraints in model subtyping.

8 Concluding Remarks

The notion of model subtyping has been revisited from a
subsumption perspective. Structural model subtyping has
been extended to metamodel specifications as the problem
of whether two groups of OCL constraints are compatible
when their metamodels (or class diagrams) are not related
a priori. We have implemented a procedure for solving this
problem that, in addition, gives us: an extension metamodel
for reusing model management operations whose signature
involves the supertypemetamodel when themetamodel spec-
ifications are compatible; and the reason why their meta-
models are not subtype of each other, or else a metamodel-
conformant model that satisfies the constraints of the sub-
type but not some of the supertype, when they are not com-
patible. The procedure is decidable when appropriate bounds
are used for finding the witness model.
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Structural model subtyping can be used for developing
metamodel specification refinements without losing expres-
sive power with respect to other approaches to subtyping.
We have shown that it is powerful enough so as to provide
some adaptations for free without having to provide any
explicit information relating metamodel specifications a pri-
ori, becoming both isomorphic and non-isomorphic [19]. We
have also discussed that structural model subtyping provides
a convenient theoretical framework to deal with dynamic,
partial and multiple model typing. Nevertheless, structural
model subtyping suffers from being too liberal in contexts
where all the object subtypings need to be analyzed. To
mitigate this threat to usability, our tool provides a recom-
mendation algorithm that suggests an optimal strict model
subtyping. The inclusion of a more prescriptive approach
that limits the amount of valid object subtypings or that
dictates how subtypings should be performed with user in-
formation provided up front is a potential extension.
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